
ION™

(IDL On the Net)

Guide

ION Version 1.1
February, 1998 Edition
Copyright © Research Systems, Inc.
All Rights Reserved

Restricted Rights Notice
The ION™ software program and the accompanying procedures, functions, and
documentation described herein are sold under license agreement. Their use,
duplication, and disclosure are subject to the restrictions stated in the license agreement.

Limitation of Warranty
Research Systems, Inc. makes no warranties, either express or implied, as to any matter
not expressly set forth in the license agreement, including without limitation the
condition of the software, merchantability, or fitness for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other damages
suffered by the Licensee or any others resulting from use of the ION software package or
its documentation.

Permission to Reproduce this Manual
Purchasers of ION licenses are given limited permission to reproduce this manual
provided such copies are for their use only and are not sold or distributed to third parties.
All such copies must contain the title page and this notice page in their entirety.

Acknowledgments
ION™ and IDL® are trademarks of Research Systems Inc., registered in the United States
Patent and Trademark Office, for the computer programs described herein. All other
brand or product names are trademarks of their respective holders.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes
routines are used by permission.

ION™ documentation is printed on recycled paper. Our paper has a minimum
20% post-consumer waste content and meets all EPA guidelines.

Contents

Chapter 1:

Overview . 1
What is ION? .. 2
ION Limitations ... 2
ION Components .. 2
Skills Necessary to use ION ... 4
Typographical Conventions .. 5
About the Example Code ... 5

Chapter 2:

Installation and Configuration 7
Installing ION under Unix .. 8
Installing ION under Windows .. 9
Location of ION Class Files ... 9
About Web Servers .. 10
i

ii Contents
Chapter 3:

Using ION’s Java Applets . 11
What are the Pre-Built Applets? .. 12
Using ION Applets ... 12
Attributes Specified in the Applet Tag ... 13
Parameters Specified via PARAM Tags ... 14
IONGraphicApplet ... 18
IONContourApplet .. 20
IONPlotApplet .. 22
IONSurfaceApplet .. 24
ION Applets and Scripting Languages .. 25
Example: Using JavaScript ... 27
Example: Using VBScript ... 29

Chapter 4:

ION Java Classes . 31
What are the ION Graphics Classes? ... 32
Using the Graphics Classes .. 33
What are the Low-Level Classes? ... 34

Chapter 5:

Building ION Applets and Applications 37
Creating Applets ... 38
Compiling Applets .. 38
Including Applets in HTML Pages .. 39
Supporting Java Archive Files .. 39
Error Handling and ION Exceptions .. 41
Simple Applet Example .. 42
Debug Mode ... 45
The ION Device .. 45
Tips and Tricks ... 48

Chapter 6:

Configuring the ION Server 51
Command Security ... 52
The ION Daemon ... 53
The ION HTTP Tunnel Broker ... 58
ION Command-Line Utilities .. 60
ION Windows NT Utilities .. 62
Contents ION Guide

Contents iii
The ION Server Process ... 65
Configuration Details .. 66

Chapter 7:

ION Class and Method Reference 69
How to Use this Chapter ... 70
Alphabetical List of Classes .. 72
IONCallableClient ... 79
IONCanvas ... 90
IONCommandDoneListener .. 94
IONComplex .. 96
IONContour ... 101
IONDComplex ... 107
IONDisconnectListener ... 112
IONDrawable ... 113
IONGraphicsClient .. 121
IONGrConnection ... 134
IONGrContour .. 142
IONGrDrawable ... 148
IONGrGraphic ... 155
IONGrPlot .. 160
IONGrSurface .. 165
IONMouseListener .. 171
IONOffScreen .. 175
IONOutputListener ... 177
IONPaletteFilter ... 178
IONPlot .. 181
IONSurface ... 186
IONVariable ... 192
IONWindow .. 211
IONWindowingClient ... 213

Chapter 8:

Troubleshooting . 221
Enable Java in Your Browser ... 222
File Permissions ... 222
Starting the ION Service .. 222
Location of Class Files ... 222
Location of IDL .pro Files .. 223
Browser Timeout on Error .. 223
ION Guide Contents

iv Contents
Index . 225
Contents ION Guide

Chapter 1

Overview

The following topics are covered in this chapter:

What is ION? .. 2
ION Limitations 2
ION Components 2
Skills Necessary to use ION 4
Typographical Conventions 5
About the Example Code 5
1

2 Chapter 1: Overview
What is ION?
IDL On the Net (ION) is a sophisticated (yet simple to implement) system that brings the
power of IDL to the Internet. ION uses the latest Java and Internet technology to deliver
efficient data analysis and visualization capabilities to World Wide Web client
applications. ION is ideal for organizations that have shared data that needs to be
accessed and visualized by a wide variety of users. ION can be configured as part of a
public Web server, a proprietary intranet server, or as both at the same time.

ION allows access to IDL from virtually any computer in the world. Updating and
maintaining ION is simple, since the product resides only on the server. Applets are sent
to clients over the Web, as needed.

ION is built on IDL, which means that existing IDL programs can be easily converted for
Internet access. ION is simple to use, requiring only basic knowledge of IDL and HTML.
Pre-built Java applets are included, so there is no need to become a Java programmer to
use ION. However, full Java integration is provided for those who wish to develop custom
Java applications that work in concert with ION.

Note Only Unix and Windows NT versions of the ION Server are available. (See “Config-
uring the ION Server” on page 51 for details.) Since Java is a cross-platform language,
however, there are no platform limitations on ION client applications.

ION Limitations

Server Limitations
The ION version 1.1 Tunnel Broker does not work through network firewalls that do not
use the SOCKS protocol. (See “The ION HTTP Tunnel Broker” on page 58 for details on
the Tunnel Broker.)

IDL Limitations
ION does not allow access to all IDL features. Specifically, ION does not let you use:

• IDL Widgets

• IDL Object Graphics

• the line continuation character (“$”)

All of IDL’s analytical routines and all of the IDL Direct Graphics routines are available,
subject to the constraints imposed by the ION security mechanism. (See “Command
Security” on page 52 for more on ION’s security mechanism.)

ION Components
The ION package consists of the following components:
What is ION? ION Guide

Chapter 1: Overview 3
ION Server
The ION Server is a program that manages communication between an ION client
application (either a Java Applet running in a Web browser or a stand-alone Java
application) and IDL. The ION Server translates requests from ION clients into
commands that can be processed by IDL, and then passes output from IDL back to the
client for display. The ION Server is discussed in detail in “Configuring the ION Server”
on page 51.

ION Daemon
The ION Daemon is a program that makes the initial connection between an ION client
and the ION Server. The ION Daemon “watches” a specific port on the ION Server’s host
computer. When the daemon receives a request for connection, it performs basic security
screening before connecting the ION client to the ION Server. The ION Daemon is
discussed in detail in “Configuring the ION Server” on page 51.

ION HTTP Tunnel Broker
The ION HTTP Tunnel Broker is a program that allows ION client applets (running in
World Wide Web browsers) located behind network firewalls to communicate with an
ION Server on the other side of the firewall. The Tunnel Broker is discussed in detail in
“The ION HTTP Tunnel Broker” on page 58.

Pre-Built ION Client Applets
The ION package includes a set of pre-built Java applets. The pre-built applets allow you
to begin using ION immediately, without the need to write Java code. See “Using ION’s
Java Applets”on page 11 for details.

ION Graphics Java Classes
The ION Graphics Java classes provide a simple, straightforward interface that allows you
to create ION client applets and applications quickly and easily. While using the ION
Graphics classes does require that you write Java code, the classes do handle most of the
details of writing applications to interact with IDL seamlessly. See “ION Java Classes”on
page 21 for details.

ION Low-Level Java Classes
The ION Low-Level Java classes are the backbone of the ION system; they provide the
tools a professional Java programmer needs to create robust applications to interact with
IDL. The ION Graphics Java classes and the ION pre-built applets are both built directly
from the ION Low-Level classes. See “ION Low-level Java Classes”on page 29 for details

Documentation
ION documentation is provided inprint, HTML, and Adobe Acrobat (PDF) formats.
HTML documentation is included in your ION installation in the docs subdirectory;
open the file ion.html to navigate to the rest of the documentation. The Adobe Acrobat
version of the documentation is located in the file ion.pdf in the help subdirectory.
Note that version 3 or later of the Adobe Acrobat viewer application is required to view
the .pdf file. You can download the Adobe Acrobat viewer free directly from Adobe.
ION Guide ION Components

http://www.adobe.com

4 Chapter 1: Overview
Skills Necessary to use ION
ION is designed to make it easy for you to create interactive Web pages or
Internet/Intranet applications that use IDL. In order to use ION effectively, and
depending on your objective, you will need one or more of the following:

Familiarity with IDL
ION is designed to interact with IDL. To use ION, you will need to be familiar with IDL’s
basic command syntax and features. For more information about IDL, consult your IDL
documentation.

Familiarity with HTML
In order to include ION Java applets in Web pages, you will need to be familiar with the
HyperText Markup Language (HTML). There are numerous books at all skill levels
available if you wish to learn HTML; be sure to pick a reference that discusses HTML
version 3 or later. One book we have found useful is the HTML Sourcebook, Third Edition
by Ian S. Graham (Wiley Computer Publishing, New York, 1997. ISBN 0-471-17575-7).
You may also wish to visit the World Wide Web Consortium’s web site at www.w3.org
for details about the Web, HTML, and other topics of interest.

Familiarity with using Java applets
Java applets are embedded into Web pages using standard HTML code and the APPLET
tag. Consult your HTML documentation or visit java.sun.com/applets for
information about using applets in HTML pages.

Familiarity with building Java applets
If you wish to build your own applications or applets to use the ION Server, you will need
to be familiar with Java programming concepts. Again, there are numerous reference
books available describing Java and Java programming. Some that we have found useful
are:

The Java Tutorial by Mary Campione and Kathy Walrath (Addison-Wesley, Reading, MA,
1996. ISBN 0-201-63454-6)

The Java Class Libraries by Patrick Chan and Rosanna Lee (Addison-Wesley, Reading,
MA, 1997. ISBN 0-201-63458-9)

Java in a Nutshell, by David Flanagan (O’Reilly & Associates, Sebastopol, CA, 1996. ISBN
1-56592-183-6)

You can download the Java Developer’s Kit directly (and find current information about
and reference material pertaining to Java) from java.sun.com.

Familiarity with Web Servers
Even if you do not maintain the World Wide Web server at your site, you should be aware
of the configuration details. You will need to know where files should be located for access
Skills Necessary to use ION ION Guide

http://www.w3.org
http://java.sun.com/applets
http://java.sun.com

Chapter 1: Overview 5
by the server, what file permissions are necessary, and any other site-specific details that
apply to publishing HTML pages on the World Wide Web.

Typographical Conventions
The following typographical conventions are used in this book:

• UPPER CASE
IDL functions, procedures, and keywords are displayed in UPPER CASE type. For exam-
ple, the calling sequence for an IDL procedure looks like this:

CONTOUR, Z [, X, Y]

• Mixed Case
ION object class and method names are displayed in Mixed Case type. Unlike IDL, the
Java language is case-sensitive; names of ION Java methods and classes must be entered
with the same capitalization as shown in this reference section.

• Italic type
Arguments to ION procedures and functions — data or variables you must provide —
are displayed in italic type.

• Square brackets ([])
Square brackets used in calling sequences indicate that the enclosed arguments are
optional. Do not type the brackets. In the above CONTOUR example, X and Y are optional
arguments. Square brackets are also used to specify array elements.

• Courier type
Names of ION classes and methods are displayed in courier type. Syntax descriptions
are shown in courier bold and bold italic. Examples are shown in courier.
Uniform Resource Locators (URLs) are also shown in courier.

About the Example Code
Example code illustrating ION features is included in the installed ION distribution. You
will find example HTML files located in subdirectories of the examples directory in your
installed ION distribution. Browse through the example code starting with the file
examples.html in the examples directory. Many of the examples allow you to view the
Java source for the example within your browser. The HTML version of the ION User’s
Guide (this document) includes links to the installed example HTML files.

The raw Java source files for the example ION classes are included in the src subdirectory
of the classes directory. Also included in the src subdirectory are a number of IDL .pro
files that are called by the ION demonstration applets. In order to use the ION demos on
your own system, you must add the directory RSI_DIR/ion_1.1/classes/src to
IDL’s path. See “Location of IDL .pro Files” on page 223.
ION Guide Typographical Conventions

../examples/examples.html

6 Chapter 1: Overview
Note For the examples to function properly, you must have the ION Server running on
your machine. If you do not yet have the ION Server running on your system, visit
Research Systems’ ION web site and view example code there.
About the Example Code ION Guide

http://nucleus.rsinc.com

Chapter 2

Installation and
Configuration

The following topics are covered in this chapter:

Installing ION under Unix 8
Installing ION under Windows 9
Location of ION Class Files 9
About Web Servers 10
7

8 Chapter 2: Installation and Configuration
This chapter discusses the process of installing ION on your system. See “Configuring the
ION Server” on page 51 for details on setting up the ION Server once it is installed.

The ION installation process is very similar to the IDL installation process. The ION
directory tree ion_release (where release is the version number of the ION release you
are installing) is installed in your Research Systems product directory (denoted here as
RSI_DIR). In addition, a copy of IDL is installed in the ION directory tree, in the idl_5
subdirectory (Unix) or the idl50 subdirectory (Windows).

IDL must be installed in the ION tree even if you have another IDL installation on the
same host machine, for two reasons:

1. Because ION loads IDL features dynamically, each version of ION depends on a specific
version of IDL. ION version 1.1 relies on IDL version 5.0.3. ION may not work properly
if a different version of IDL is substituted.

2. ION expects to find the IDL libraries in a well-defined location. ION will not work if it
cannot find the IDL library.

The ION Server communicates with a copy of IDL installed in the ION hierarchy. If ION
is installed in /usr/local/rsi/ion_1.1, IDL is expected to be located in the directory
/usr/local/rsi/ion_1.1/idl_5.

There are slight differences in the installation procedures depending on whether you have
downloaded the ION distribution from the Internet or have received an ION CD-ROM.

Installing ION under Unix

If you downloaded ION from a World Wide Web Page
If you have downloaded ION from a World Wide Web page, you will need to use the Unix
tar program to extract the installation files. Place the tar file downloaded from the Web
page in the RSI directory (usually /usr/local/rsi) and execute the command

tar xvf ion11_<os_name>.tar

where <os_name> is the name of the platform you have downloaded ION for. Read the
file README.TXT for information that was too late to include in the main documentation.
Installation instructions are available in an Adobe Acrobat file named ion_inst.pdf.

If you downloaded ION from an FTP Server
If you have downloaded ION from an FTP server, ION is installed on your system by a
shell script named unpack. Follow the instructions in the file README.TXT located in the
same directory as the ION archive files to download and install ION on your system.
Installation instructions are available in an Adobe Acrobat file named ion_inst.pdf.

If you have an ION CD-ROM
If you have an ION CD-ROM, consult the printed Installation Guide.
Installing ION under Unix ION Guide

ion_inst.pdf
ion_inst.pdf

Chapter 2: Installation and Configuration 9
Installing ION under Windows
The ION installation process is the same whether you have downloaded ION from the
Internet or received a CD-ROM. Simply run setupex.exe to run the installation
program and follow the prompts. Additional installation instructions can be found in the
Installation Guide. If you have an ION CD-ROM, you should have received a printed
Installation Guide. If you downloaded ION from the Internet, the Installation Guide is
available in an Adobe Acrobat file named ion_inst.pdf.

Location of ION Class Files
Java Applet security mechanisms require that the ION class files reside on the same host
machine as the ION Server. During installation, ION class files are installed in the
following location on the ION Server:

RSI_DIR/ion_release/classes/

where RSI_DIR is the location of the RSI directory on your system. By default, RSI_DIR
is /usr/local/rsi. The ION directory is named ion_release, where release is the
release number. For example, on Unix systems, ION release 1.1 the directory is named
ion_1.1, and for Windows systems the directory is named ion11.

ION’s Java class files are provided in three formats:

1. A package of Java class files named IONclass.class, where IONclass is the name of the
class implemented. Java packages are structured in a directory hierarchy and named
accordingly; the ION package has the name com.rsi.ion, which means that the class
files themselves are in the com/rsi/ion subdirectory of the classes directory.

2. An uncompressed zip file named ion_release.zip, where release is the version number
of the ION release. The zip file is installed in the classes directory.

3. A Java ARchive (jar) file named ion_release.jar, where release is the version number
of the ION release. The jar file is installed in the classes directory.

Locating the Class Files for use by ION Applets
ION applets must have access to the ION class files in order to run. While you can use the
CODEBASE attribute to specify a relative path from the location of an HTML page
containing an ION applet tag to the location of the class files, it is often easier to copy the
class files (or provide a symbolic link, if your system supports symbolic links) to another
directory located in or near the directory containing your HTML files.

For example, suppose you have located your HTML pages in a directory named
public_html. You may wish to place the ION package, the ION zip file, and the ION jar
file in a subdirectory of public_html named java. If you then include any ION applet
class files you create in the java directory, you could simply specify:

CODEBASE=”./java”

in the <APPLET> tag used in your HTML page.
ION Guide Installing ION under Windows

ion_inst.pdf

10 Chapter 2: Installation and Configuration
See the discussion of the CODEBASE attribute on page 13 for further details.

About Web Servers
ION does not include World Wide Web server software, and this document does not
discuss the installation or configuration of web servers. You will need to have web server
software installed and properly configured before ION will function.

The Apache Group makes source-code and compiled versions of its web server software
available at no cost. Servers are available for most Unix flavors, and as of this writing
(January, 1998) a Windows NT version is currently in the beta-test stage. Visit
http://apache.org for details.
About Web Servers ION Guide

http://apache.org

Chapter 3

Using ION’s Java
Applets

The following topics are covered in this chapter:

What are the Pre-Built Applets? 12
Using ION Applets 12
Attributes Specified in the Applet Tag . 13
Parameters Specified via PARAM Tags .. 14
IONGraphicApplet 18
IONContourApplet 20
IONPlotApplet 22
IONSurfaceApplet 24
ION Applets and Scripting Languages . 25
Example: Using JavaScript 27
Example: Using VBScript 29
11

12 Chapter 3: Using ION’s Java Applets
The ION package is designed to give you a flexible way to use IDL in a distributed,
networked environment. This can mean anything from presenting graphics created with
IDL on the World Wide Web to creating sophisticated client-side applications that use
IDL’s analytical and graphical facilities. To address the wide range of possible tasks, the
ION package includes everything from pre-built Java applets to a low-level Java class
library.

A Note on the Examples
You can use the examples in the chapter directly in your own web pages by specifying the
appropriate host and port settings for your server, and by specifying the CODEBASE
attribute to reflect the location of the ION class files. Before you can use the ION Java
applets, however, you must have the ION Server installed, configured, and running. See
“Configuring the ION Server” on page 51 for details.

What are the Pre-Built Applets?
The Java applets included with the ION package allow you to interact with the ION Server
with a minimum of knowledge of or experience with the Java language. Because the
applets are pre-built, you can include them in Web pages using only HTML code. This
chapter discusses the pre-built applets, describes how to set up and customize each applet,
and provides example code.

Using ION Applets
Use the HTML tag <APPLET> to include ION applets in your HTML code. Information
required by the applet is provided via attributes, either within the APPLET tag itself or in
one or more PARAM tags specified for the applet.

You can include HTML text within an applet tag, but the text will only be displayed if the
Java virtual machine fails to start. You may find it useful to include something like the
following:

<APPLET attributes>

<!- Applet code >

Java virtual machine failed to start.

Is Java enabled in your browser?

</APPLET>

People with browsers that do not support Java would see the text:

Java virtual machine failed to start. Is Java enabled on your browser?

while those with browsers that do support Java would see only the applet.
What are the Pre-Built Applets? ION Guide

Chapter 3: Using ION’s Java Applets 13
Attributes Specified in the Applet Tag
In addition to attributes required by the browser, you can specify the following attributes
when you create the applet:

NAME
A string containing a unique name for the applet. The string should be enclosed in double
quotes marks. This attribute is required for all ION applets.

WIDTH
The width of the applet in pixels. ION uses the WIDTH attribute when creating the
drawing area. This attribute is required for all ION applets.

HEIGHT
The height of the applet in pixels. ION uses the HEIGHT attribute when creating the
drawing area. This attribute is required for all ION applets.

CODE
A string specifying the name of the applet class. The CODE attribute should specify fully-
qualified class name relative to the directory in which the HTML file is located. If the
CODEBASE attribute is included, the class name specified in the CODE attribute should
be relative to the directory specified by CODEBASE.

For example, If you were to place an HTML file that used the IONPlotApplet in an HTML
subdirectory of the ION directory, the CODE and CODEBASE attributes would be:

CODE=com.rsi.ion.IONPlotApplet.class

CODEBASE=”../classes”

because the IONPlotApplet.class file is located in the com/rsi/ion subdirectory of
the classes directory in the ION distribution. Similarly, if you were to place all of the
Java class files necessary for your applet in the directory containing your HTML files, you
could omit the CODEBASE attribute and use something like the following:

CODE=MyApplet.class

This attribute is required for all ION applets.

CODEBASE
The CODEBASE attribute is not strictly required, but is often useful. The Java class loader
searches for the contents of the classes directory in current directory — that is, the
directory from which the HTML page containing the applet code was loaded. If you locate
the HTML page somewhere other than the RSI_DIR/ionrelease/classes directory,
you will need to set the CODEBASE attribute to the relative path from the page location
to the classes directory, or to a URL that specifies the location.

Note If the CODEBASE attribute is set equal to a URL, then the host specified by the URL
can be used for ION network connections, but the host that is serving the HTML
page cannot. This allows you to set up the ION Server and all of the ION class files
ION Guide Attributes Specified in the Applet Tag

14 Chapter 3: Using ION’s Java Applets
on a machine separate from your web server, provided you include the
SERVER_NAME parameter with the same hostname as in the CODEBASE URL.

If you use this method, both the CODEBASE and SERVER_NAME attributes must
refer to the same machine or Java security errors will result. In addition, the ION
Server machine will still need to run a web server, but it will only be used to get the
.class (or archive) files for the applets.

For example, if your HTML page is located in the RSI_DIR/ionrelease/mypages
directory, you would set the CODEBASE attribute as follows:

CODEBASE=”../classes”

ARCHIVE
The ARCHIVE attribute is not required, but it can speed the downloading of Java class
files for browsers that support it. See “Supporting Java Archive Files” on page 39 for a
discussion of Java archive files.

ALT
The ALT attribute specified a text string to be displayed if for some reason the applet
cannot be loaded. The ALT attribute is not required, but consider adding something like
the following to your applet description to enhance the user-friendliness of your HTML
page:

ALT="ION Applet failed to load. Is Java enabled in your browser?"

Note If you include HTML-formatted text within your APPLET tag, it will be displayed
only if the Java Virtual Machine fails to start. This is slightly different from the ALT
attribute, which contains text to be displayed only if the Java applet fails to load.

Example
The following APPLET tag creates an applet of the IONGraphicApplet class, with a
drawing area 100 pixels by 100 pixels, with the name “MyApplet.” The HTML page
containing the applet code is assumed to be located in the directory
RSI_DIR/ionrelease/classes, so no CODEBASE attribute is included.

<APPLET NAME=”MyApplet” WIDTH=100 HEIGHT=100

CODE=com.rsi.ion.IONGraphicApplet.class>

<!- Other applet code >

</APPLET>

Parameters Specified via PARAM Tags
The HTML tag <PARAM> includes a NAME attribute and a VALUE attribute, each of which
is enclosed in double quotes. Use the PARAM tag to specify further applet parameters. This
section discusses parameters common to all ION applets; parameters specific to
individual applets included in the ION package are discussed in the applet-specific
sections below.
Parameters Specified via PARAM Tags ION Guide

Chapter 3: Using ION’s Java Applets 15
Connecting to the ION Server
Before IDL commands can be executed and graphics created, the ION applet must
connect to the ION Server. Establish a connection by including the following connection
parameters in the HTML code that creates the applet. Note that each PARAM tag has a
NAME attribute and a VALUE attribute, each of which is enclosed in double quotes.

SERVER_NAME
Set this value of this parameter equal to the name of the computer on which the ION
Server is running. The server name can be either a simple host name (i.e. myhost) or a
fully-qualified domain name (i.e. myhost.mycompany.com). Java security mechanisms
require that the applet be located on the same machine as the ION Server. If the server
name is not provided, the host name of the machine from which the applet was loaded is
used.

PORT_NUMBER
The port number of the port on the server where the ION Daemon is listening. By default,
the ION Server listens to port 7085.

SERVER_DISCONNECT
Set the value of this parameter equal to "YES" if you want the applet to disconnect from
the server when all commands have been processed. (Note that if more than one applet is
using the connection, the connection will not be closed until all commands from all of
the connected applets have been completed.) The default value is "NO".

CONNECTION_TYPE
Set the value of this parameter to specify what type of connection ION should use. The
three possible values are:

• “HTTP_CON” — Make only HTTP connections, using the The ION HTTP Tunnel
Broker.

• “SOCK_CON” — Make only socket connections, using only the ION Daemon.

• “BEST_CON” — Attempt to make a socket connection. If a socket connection is not
possible, attempt to make an HTTP connection. This is the default setting.

See “The ION HTTP Tunnel Broker” on page 58 for additional details about HTTP
connections.

CONNECTION_TIMEOUT
Set the value of this parameter to an integer number of seconds to wait before assuming
that a socket connection has failed. If the CONNECTION_TYPE parameter is set to
“BEST_CON”, ION will attempt to make an HTTP connection if the timeout time expires
before a socket connection is made.

HTTP_HOSTNAME
Set the value of this parameter equal to the hostname of the computer on which the ION
HTTP Tunnel Broker is running.
ION Guide Parameters Specified via PARAM Tags

16 Chapter 3: Using ION’s Java Applets
HTTP_PORT
Set the value of this parameter equal to the port number the ION HTTP Tunnel Broker
is listening to.

Example
The following connects the “MyApplet” applet to a server named “Server1”, using the
default port number, the defaut connection type, and specifies that the applet should not
disconnect from the server when all commands have been processed:

<APPLET NAME=”MyApplet” WIDTH=100 HEIGHT=100

CODE=com.rsi.ion.IONGraphicApplet.class>

<PARAM NAME=”SERVER_NAME” VALUE=”Server1”>

<PARAM NAME=”SERVER_DISCONNECT” VALUE=”NO”>

<!- Other applet code >

</APPLET>

Using the Same Connection for Multiple Applets
Multiple ION applets can share a single connection to the ION Server. Since each open
connection consumes network bandwidth, it is often efficient to let several applets share
the same connection.

To specify an existing connection for a new applet, use the ION_CONNECTION_NAME
parameter rather than the SERVER_NAME, PORT_NUMBER, and SERVER_DISCONNECT
parameters.

Note All applets using the same connection must be loaded into the browser at the same
time. In general, this means that applets that share a connection should be included
in the same HTML page.

ION_CONNECTION_NAME
Set this value of this parameter equal to the name of the applet whose connection you
wish to share. The applet’s name is specified by the NAME attribute in the APPLET tag.

Example
The following creates a second applet named “AnotherApplet” and specifies that it share
the server connection created for “MyApplet”:

<APPLET NAME=”AnotherApplet” WIDTH=100 HEIGHT=100

CODE=com.rsi.ion.IONGraphicApplet.class>

<PARAM NAME=”ION_CONNECTION_NAME” VALUE=”MyApplet”>

<!- Other applet code >

</APPLET>

Behavior Parameters
Two behavior parameters determine how an applet responds to certain user actions. The
two behaviors currently supported by all ION applets allow the applets to display debug
Parameters Specified via PARAM Tags ION Guide

Chapter 3: Using ION’s Java Applets 17
information and link to other HTML pages. Use the following parameters to alter the
behavior of pre-built applets:

DEBUG_MODE
If the value of this parameter is set to “YES”, holding down the shift key and clicking the
mouse in the applet drawing area displays a window containing the IDL commands and
server responses associated with the applet’s connection. If more than one applet is
connected to the connection, the information for all applets is displayed. If the main
connection has DEBUG_MODE set to “NO” (or not specified), but an applet connected to
it has DEBUG_MODE turned on, debug will be turned on for the entire connection. The
default value is “NO.”

LINK_URL
Set the value of this parameter to a URL that will be loaded if the user clicks in the applet
area. The switch to the linked URL happens before any mouse events are passed to the
server. This option should not be used with ION applets running IDL routines that accept
mouse input.

Example
The following specifies that the “MyApplet” applet will display debug information and
will link to the Research Systems web page if the user clicks in the applet drawing area:

<APPLET NAME=”MyApplet” WIDTH=100 HEIGHT=100

CODE=com.rsi.ion.IONGraphicApplet.class>

<PARAM NAME=”SERVER_NAME” VALUE=”Server1”>

<PARAM NAME=”SERVER_DISCONNECT” VALUE=”NO”>

<PARAM NAME=”DEBUG_MODE” VALUE=”YES”>

<PARAM NAME=”LINK_URL” VALUE=”www.rsinc.com”>

<!- Other applet code >

</APPLET>
ION Guide Parameters Specified via PARAM Tags

18 Chapter 3: Using ION’s Java Applets
IONGraphicApplet
The IONGraphicApplet is used to execute a series of IDL commands and display the
results. Any valid IDL commands that are not explicitly excluded by the ION security
mechanism (see “Command Security” on page 52) can be passed to the
IONGraphicApplet for execution. Using the ION Applet parameters, the Applet can also
display debug information and be used as a hyperlink to another HTML page.

The IDL commands can be sent synchronously or asynchronously. By default, each
command is sent and the client blocks (stops accepting commands) until the command is
complete. However, in some circumstances the client needs to regain control of the
application immediately to be able to process user input. An example of this situation
would be when a command starts an IDL routine that enters an event loop. If the
command is blocking, the client will not be free to receive data from the server or provide
input the server may request.

Parameters
In addition to the parameters described in “Parameters Specified via PARAM Tags” on
page 14, the IONGraphicsApplet accepts the following parameters:

IDL_COMMAND_0, ..., IDL_COMMAND_n
The IDL_COMMAND_* parameters specify the IDL commands to send to the ION Server.
The value of each IDL_COMMAND is a valid, single line IDL command (the “$” line
continuation is not supported by ION). Note that commands that are explicitly excluded
via the ION security mechanism are not processed.

Note Command numbers must be continuous, beginning with zero and ending with n.

AYSNC_COMMANDS
Set the value of this parameter to “YES” if the client should send commands
asynchronously. The default value is “NO”.

DECOMPOSED_COLOR
If set to “YES”, the applet will treat pixel values as RGB triplets when on a true-color (24-
bit or 32-bit) device. (This is the default.) If set to “NO”, the applet will treat the first eight
bits (the red portion) of the pixel value as an index into the current color table when
displaying on a true color device. For more information on decomposed color mode, see
the documentation for the DECOMPOSED keyword to the DEVICE procedure in the
IDL Reference Guide.

Example
The following example creates an IONGraphicsApplet that connects to a server, generates
some data, sets the color table, and displays the data using IDL’s SHOW3 procedure. In
the example, debugging mode is enabled, and the applet drawing area is a link to the
Research Systems web page.

<APPLET NAME="CONNECTION" CODE=IONGraphicApplet.class
Parameters Specified via PARAM Tags ION Guide

Chapter 3: Using ION’s Java Applets 19
WIDTH=200 HEIGHT=200>

<! This applet connects to host KIROC, port 8084 >

<PARAM NAME="SERVER_NAME" VALUE="KIROC">

<PARAM NAME="PORT_NUMBER" VALUE="8084">

<PARAM NAME="LINK_URL" VALUE="www.rsinc.com">

<PARAM NAME="DEBUG_MODE" VALUE="YES">

<PARAM NAME="SERVER_DISCONNECT" VALUE="YES">

<PARAM NAME="IDL_COMMAND_0"

VALUE="a = exp(-(shift(dist(30), 15, 15)/7)^2)">

<PARAM NAME="IDL_COMMAND_1" VALUE="loadct, 1">

<PARAM NAME="IDL_COMMAND_2" VALUE="show3, a">

</APPLET>
ION Guide Parameters Specified via PARAM Tags

20 Chapter 3: Using ION’s Java Applets
IONContourApplet
The IONContourApplet displays an IDL contour plot. The X, Y and Z values of the plot
and any IDL Contour properties supported by ION can be set through parameters to the
applet.

Note You can also create contour plots using the IONGraphicApplet, specifying the con-
tour properties in IDL command strings. The IONContourApplet is merely a simpli-
fied way to display contour plots.

Parameters
In addition to the parameters described in “Parameters Specified via PARAM Tags” on
page 14, the IONContourApplet accepts the following parameters:

X_VALUES
Set the value of this parameter equal to a valid IDL expression that evaluates to a vector
or two-dimensional array specifying the X coordinates for the contour surface. If
X_VALUES specifies a vector, each element specifies the X coordinate for a column in the
Z_VALUES array(e.g., X[0] specifies the X coordinate for Z[0,*]). If X_VALUES specifies
a two-dimensional array, each element specifies the X coordinate of the corresponding
point in the Z_VALUES array.

Y_VALUES
Set the value of this parameter equal to a valid IDL expression that evaluates to a vector
or two-dimensional array specifying the Y coordinates for the contour surface. If
Y_VALUES specifies a vector, each element specifies the Y coordinate for a column in the
Z_VALUES array(e.g., Y[0] specifies the Y coordinate for Z[0,*]). If Y_VALUES specifies a
two-dimensional array, each element specifies the Y coordinate of the corresponding
point in the Z_VALUES array.

Z_VALUES
Set the value of this parameter equal to a valid IDL expression that evaluates to a one- or
two-dimensional array containing the values that make up the contour surface. If the
X_VALUES and Y_VALUES parameters are provided, the contour is plotted as a function
of the (X, Y) locations specified by their contents. Otherwise, the contour is generated as
a function of the two-dimensional array index of each element of Z_VALUES.

contour_property_1, ..., contour_property_n
Here, contour_property_* is the name of a contour property supported by the
IONGrContour class. Properties for the IONContourApplet reflect the capabilities
implemented in keywords to the IDL CONTOUR procedure.

Note Unlike the IONGraphicApplet IDL_COMMAND_* parameter, the
contour_property parameters are not numbered.

The following IDL Contour properties are supported by IONContourApplet. Refer to the
IDL documentation on keywords available for use with the CONTOUR procedure for an
explanation of each property:
Parameters Specified via PARAM Tags ION Guide

Chapter 3: Using ION’s Java Applets 21
C_ANNOTATION, C_CHARSIZE, C_COLORS, C_LABELS, C_LINESTYLE,
C_ORIENTATION, C_SPACING, CLOSED, DOWNHILL, FILL, CELL_FILL, FOLLOW,
IRREGULAR, LEVELS, NLEVELS, OVERPLOT, BACKGROUND, CHARSIZE, CLIP,
COLOR, DATA, DEVICE, FONT, LINESTYLE, NOCLIP, NODATA, NOERASE,
NORMAL, POSITION, SUBTITLE, T3D, TICKLEN, TITLE, MAX_VALUE,
MIN_VALUE, NSUM, POLAR, XLOG, YNOZERO, YLOG, XCHARSIZE, YCHARSIZE,
ZCHARSIZE, XGRIDSTYLE, YGRIDSTYLE, ZGRIDSTYLE, XMARGIN, YMARGIN,
ZMARGIN, XMINOR, YMINOR, ZMINOR, XRANGE, YRANGE, ZRANGE, XSTYLE,
YSTYLE, ZSTYLE, XTICKFORMAT, YTICKFORMAT, ZTICKFORMAT, XTICKLEN,
YTICKLEN, ZTICKLEN, XTICKNAME, YTICKNAME, ZTICKNAME, XTICKS,
YTICKS, ZTICKS, XTICKV, YTICKV, ZTICKV, XTITLE, YTITLE, ZTITLE, ZVALUE,
ZAXIS

Example
The following example creates an IONContourApplet that connects to the same server
used by the “Connection” applet defined in the IONGraphicApplet example. The applet
generates some data for the Z value of the contour, and sets the “Title” property of the
contour plot.

<APPLET NAME="CONTOUR" CODE=IONContourApplet.class

WIDTH=200 HEIGHT=200>

<! This applet uses the applet ’CONNECTION’ to connect

to the server>

<PARAM NAME="ION_CONNECTION_NAME" VALUE="CONNECTION">

<PARAM NAME="Z_VALUES" VALUE="exp(-(shift(dist(30), 15,

15)/7)^2)">

<PARAM NAME="TITLE" VALUE="Contour">

</APPLET>

Note that the example uses an IDL expression to generate the Z values for the contour.
The Z values could also have been specified as an IDL array, with a statement like:

<PARAM NAME="Z_VALUES"

VALUE="[[1,2,3,4][2,3,4,5][3,4,5,6][4,5,6,7]]">
ION Guide Parameters Specified via PARAM Tags

22 Chapter 3: Using ION’s Java Applets
IONPlotApplet
The IONPlotApplet displays an IDL plot. The X and Y values of the plot and any IDL plot
properties supported by ION can be set through parameters to the applet.

Note You can also create plots using the IONGraphicApplet, specifying the plot properties
in IDL command strings. The IONPlotApplet is merely a simplified way to display
plots.

Parameters
In addition to the parameters described in “Parameters Specified via PARAM Tags” on
page 14, the IONPlotApplet accepts the following parameters:

X_VALUES
Set the value of this parameter equal to a valid IDL expression that evaluates to a vector
of X data.

Y_VALUES
Set the value of this parameter equal to a valid IDL expression that evaluates to a vector
of Y data. If Y_VALUES is not specified, the data in X_VALUES is plotted as a function of
point number (starting at zero). If both arguments are provided, X_VALUES is plotted as
a function of Y_VALUES.

plot_property_1, ..., plot_property_n
Here, plot_property_* is the name of a plot property supported by the IONGrPlot
class. Properties for the IONPlotApplet reflect the capabilities implemented in keywords
to the IDL PLOT procedure.

Note Unlike the IONGraphicApplet IDL_COMMAND_* parameter, the plot_property
parameters are not numbered.

The following IDL Plot properties are supported by IONPlotApplet. Refer to the IDL
documentation on keywords available for use with the PLOT procedure for an explanation
of each property:

BACKGROUND, CHARSIZE, CLIP, COLOR, DATA, DEVICE, FONT, LINESTYLE,
NOCLIP, NODATA, NOERASE, NORMAL, POSITION, PSYM, SUBTITLE, SYMSIZE,
T3D, TICKLEN, TITLE, MAX_VALUE, MIN_VALUE, NSUM, POLAR, XLOG,
YNOZERO, YLOG, ZLOG

Example
The following example creates an IONPlotApplet that connects to the same server used
by the “Connection” applet defined in the IONGraphicApplet example. The applet
generates some data for the X value of the plot, and sets the “Title” and “Linestyle”
properties of the plot.

<APPLET NAME="PLOT" CODE=IONPlotApplet.class

WIDTH=200 HEIGHT=200>
Parameters Specified via PARAM Tags ION Guide

Chapter 3: Using ION’s Java Applets 23
<! This applet uses the applet ’CONNECTION’ to connect

to the server>

<PARAM NAME="ION_CONNECTION_NAME" VALUE="CONNECTION">

<PARAM NAME="LINK_URL" VALUE="plotappletsrc.html">

<PARAM NAME="X_VALUES" VALUE="exp(-(shift(dist(30), 15,

15)/7)^2)">

<PARAM NAME="TITLE" VALUE="Plot">

<PARAM NAME="LINESTYLE" VALUE="2">

</APPLET>
ION Guide Parameters Specified via PARAM Tags

24 Chapter 3: Using ION’s Java Applets
IONSurfaceApplet
The IONSurfaceApplet displays an IDL Surface plot. The X, Y and Z values of the plot and
any IDL Surface properties supported by ION can be set through parameters to the
applet.

Note You can also create surface plots using the IONGraphicApplet, specifying the plot
properties in IDL command strings. The IONSurfaceApplet is merely a simplified
way to display surface plots.

Parameters
In addition to the parameters described in “Parameters Specified via PARAM Tags” on
page 14, the IONSurfaceApplet accepts the following parameters:

X_VALUES
Set the value of this parameter equal to a valid IDL expression that evaluates to a vector
or two-dimensional array specifying the X coordinates for the surface. If X_VALUES
specifies a vector, each element specifies the X coordinate for a column in the Z_VALUES
array(e.g., X[0] specifies the X coordinate for Z[0,*]). If X_VALUES specifies a two-
dimensional array, each element specifies the X coordinate of the corresponding point in
the Z_VALUES array.

Y_VALUES
Set the value of this parameter equal to a valid IDL expression that evaluates to a vector
or two-dimensional array specifying the Y coordinates for the surface. If Y_VALUES
specifies a vector, each element specifies the Y coordinate for a column in the Z_VALUES
array(e.g., Y[0] specifies the Y coordinate for Z[0,*]). If Y_VALUES specifies a two-
dimensional array, each element specifies the Y coordinate of the corresponding point in
the Z_VALUES array.

Z_VALUES
Set the value of this parameter equal to a valid IDL expression that evaluates to a one- or
two-dimensional array containing the values that make up the surface. If the X_VALUES
and Y_VALUES parameters are provided, the contour is plotted as a function of the (X, Y)
locations specified by their contents. Otherwise, the surface is generated as a function of
the two-dimensional array index of each element of Z_VALUES.

surface_property_1, ..., surface_property_n
Here, surface_property_* is the name of a surface property supported by the
IONGrSurface class. Properties for the IONSurfaceApplet reflect the capabilities
implemented in keywords to the IDL SURFACE procedure.

Note Unlike the IONGraphicApplet IDL_COMMAND_* parameter, the
surface_property parameters are not numbered.

The following IDL Surface properties are supported by the IONSurfaceApplet. Refer to the
IDL documentation on keywords available for use with the SURFACE procedure for an
explanation of each property:
Parameters Specified via PARAM Tags ION Guide

Chapter 3: Using ION’s Java Applets 25
AX, AZ, BOTTOM, HORIZONTAL, LEGO, LOWER_ONLY, SAVE, SHADES,
UPPER_ONLY, ZAXIS, BACKGROUND, CHARSIZE, CLIP, COLOR, DATA, DEVICE,
FONT, LINESTYLE, NOCLIP, NODATA, NOERASE, NORMAL, POSITION,
SUBTITLE, T3D, TICKLEN, TITLE, MAX_VALUE, MIN_VALUE, NSUM, POLAR,
XLOG, YNOZERO, YLOG, XCHARSIZE, YCHARSIZE, ZCHARSIZE, XGRIDSTYLE,
YGRIDSTYLE, ZGRIDSTYLE, XMARGIN, YMARGIN, ZMARGIN, XMINOR,
YMINOR, ZMINOR, XRANGE, YRANGE, ZRANGE, XSTYLE, YSTYLE, ZSTYLE,
XTICKFORMAT, YTICKFORMAT, ZTICKFORMAT, XTICKLEN, YTICKLEN,
ZTICKLEN, XTICKNAME, YTICKNAME, ZTICKNAME, XTICKS, YTICKS, ZTICKS,
XTICKV, YTICKV, ZTICKV, XTITLE, YTITLE, ZTITLE, ZVALUE, ZLOG

Example
The following example creates an IONSurfaceApplet that connects to the same server
used by the “Connection” applet defined in the IONGraphicApplet example. The applet
generates some data for the Z value of the plot, and sets the “Title” and “Lego” properties
of the plot.

<APPLET NAME="SURFACE" CODE=IONSurfaceApplet.class

WIDTH=200 HEIGHT=200>

<! This applet uses the applet ’CONNECTION’ to connect

to the server>

<PARAM NAME="ION_CONNECTION_NAME" VALUE="CONNECTION">

<PARAM NAME="LINK_URL" VALUE="surfaceappletsrc.html">

<PARAM NAME="Z_VALUES" VALUE="exp(-(shift(dist(30), 15,

15)/7)^2)">

<PARAM NAME="TITLE" VALUE="Surface">

<PARAM NAME="LEGO" VALUE="1">

</APPLET>

ION Applets and Scripting Languages
You can use scripting languages such as JavaScript and VBscript to control ION applets
included on an HTML page by calling ION methods that are available to all applets.
Communication between scripts and applets gives you a simple way to create interactive
HTML pages that build on ION’s pre-built applets.

Browser and Script Language Differences
Two competing scripting languages are currently available for use in HTML pages —
JavaScript and VBscript. JavaScript was developed by Netscape for use in its Navigator
browser; VBscript was developed by Microsoft for use in its Internet Explorer browser.
While the two scripting languages have much in common, they do differ in ways that are
beyond the scope of this manual to describe. In the context of writing scripts that
communicate with ION applets, the important differences are:
ION Guide ION Applets and Scripting Languages

26 Chapter 3: Using ION’s Java Applets
• Netscape browsers have a mechanism called “LiveConnect” that allows communication
between JavaScripts and applets.

• While Microsoft browsers support JavaScript as well as VBscript, they do not allow
communication between JavaScript and applets. In Microsoft browsers, communication
between scripts and applets must occur through VBScript.

The practical result of this situation is that in order to create HTML pages that allow users
of both Netscape’s Navigator and Microsoft’s Internet Explorer to interact with ION
applets via scripts, you must write HTML code that decides “on the fly” which scripting
language to use.

Choosing Between JavaScript and VBscript
The simplest way to provide pages that use JavaScript for Netscape browsers and pages
that use VBScript for Microsoft browsers is to use a “gateway” HTML page that loads one
of two other HTML pages depending on the type of browser. The following HTML page
uses JavaScript statements to detect whether the browser accessing the page is Netscape
Navigator. If so, it loads a JavaScript version of the HTML page; otherwise it loads a
VBScript version of the HTML page.

<HTML>

<! This page refers IE or Netscape to the proper ION example >

<SCRIPT language=JavaScript>

// <!--

var browser = navigator.appName;

if (browser.indexOf ("Netscape") != -1)

location = "javascript.html"; // jump to JavaScript page

else

location = "vbscript.html"; // jump to VBScript page

// -->

</SCRIPT>

</HTML>

Note that the script above assumes that the browser is either Navigator or Internet
Explorer. Currently, the vast majority of browsers in use are one of these two; still, you
may wish to make your own “gateway” HTML page more robust.

Methods Available
The following methods are available for communication between scripting languages and
ION applets:

executeIDLCommand(’string’)
where string is a valid IDL command string. The executeIDLCommand() method
allows you to execute any IDL command via a script, with IDL’s output going to the
specified applet’s drawing area.
ION Applets and Scripting Languages ION Guide

Chapter 3: Using ION’s Java Applets 27
For example, if you have an IONSurfaceApplet named MYSURF, you could use the
following JavaScript statement to change the colortable when the user presses a button:

document.MYSURF.executeIDLCommand(“LOADCT, 5”);

See “Example: Using JavaScript” below for a more complete discussion.

disconnect()
Use this method to disconnect from the ION Server.

Example: Using JavaScript
The following HTML code demonstrates the use of JavaScript to interactively update an
ION graphic. The example includes an IONGraphicApplet that displays a shaded surface,
uses a JavaScript select object to create a pulldown list of rotation values, and adds a
button to rotate the surface to the selected angle. The line numbers are provided to aid in
discussion; they are not part of the HTML code.

Lines 2 - 14 define the HTML header. Note that the JavaScript is included in the HEAD
section.

1) <HTML>

2) <HEAD>

3) <TITLE>Simple JavaScript Applet Test</TITLE>

The script language is JavaScript. We declare the variable rotation with an initial value of
30 degrees.

4) <SCRIPT language=JavaScript>

5) var rotation = “30”;

The getSelectedValue() function returns the text associated with the value chosen
from the pulldown list created in lines 28 - 35.

6) function getSelectedValue(sel) {

7) return sel.options[sel.selectedIndex].text

8) }

The rot_surf() function retrieves the rotation value and executes the IDL command to re-
draw the graphic. It is called when the button created in lines 36 - 37 is clicked.

9) function rot_surf() {

10) rotation = getSelectedValue(document.command_form.rot_value);

11) document.SURFAPP.executeIDLCommand(“SHADE_SURF, a, AZ=”+rotation);

12) }

13) </SCRIPT>

14) </HEAD>
ION Guide Example: Using JavaScript

28 Chapter 3: Using ION’s Java Applets
15) <BODY>

JavaScript input controls must be contained in an HTML form.

16) <FORM NAME=”command_form”>

Lines 17 - 26 create an IONGraphicApplet applet named “SURFAPP” that generates some
data and creates a shaded surface. Note that the CODEBASE attribute is set to “../classes”.
This is the proper path for the example as installed with the ION documentation files.

17) <APPLET NAME=”SURFAPP” CODE=com.rsi.ion.IONGraphicApplet.class

18) CODEBASE=”../classes” WIDTH=200 HEIGHT=200>

19) <PARAM NAME=”DEBUG_MODE” VALUE=”YES”>

20) <PARAM NAME=”SERVER_DISCONNECT” VALUE=”NO”>

21) <PARAM NAME=”DECOMPOSED_COLOR” VALUE=”NO”>

22) <PARAM NAME=”IDL_COMMAND_0”

23) VALUE=”a = EXP(-(SHIFT(DIST(30), 15, 15)/7)^2)”>

24) <PARAM NAME=”IDL_COMMAND_1” VALUE=”LOADCT, 5”>

25) <PARAM NAME=”IDL_COMMAND_2” VALUE=”SHADE_SURF, a”>

26) </APPLET>

27)

Lines 28 - 35 create the pulldown menu of rotation values.

28) <SELECT NAME=”rot_value” SIZE=1>

29) <OPTION VALUE=15>15

30) <OPTION VALUE=30 SELECTED>30

31) <OPTION VALUE=45>45

32) <OPTION VALUE=60>60

33) <OPTION VALUE=75>75

34) <OPTION VALUE=90>90

35) </SELECT>

Lines 36 - 37 create the “Rotate Surface” button, which calls the JavaScript function
rot_surf().

36) <INPUT TYPE=BUTTON NAME=”rot_button” VALUE=”Rotate Surface”

37) onClick=”rot_surf()”>

38) </FORM>

39) </BODY>

40) </HTML>

See “Notes on the Differences Between the JavaScript and VBScript Versions” on page 30.
Example: Using JavaScript ION Guide

Chapter 3: Using ION’s Java Applets 29
Example: Using VBScript
The following HTML code demonstrates the use of VBScript to interactively update an
ION graphic. The example includes an IONGraphicApplet that displays a shaded surface,
uses a VBScript select object to create a pulldown list of rotation values, and adds a
button to rotate the surface to the selected angle. The line numbers are provided to aid in
discussion; they are not part of the HTML code.

Lines 2 - 12 define the HTML header. Note that the VBScript is included in the HEAD
section.

1) <HTML>

2) <HEAD>

3) <TITLE>Simple VBScript Applet Test</TITLE>

The script language is VBScript. We declare the variable rotation with an initial value of
30 degrees.

4) <SCRIPT language=VBScript>

5) Dim rotation

6) rotation = “30”

The rot_button_OnClick() subroutine retrieves the index of the value selected in the
pulldown list created in lines 27 - 34, uses the index to retrieve the text value, and executes
the IDL command to redraw the graphic.

7) sub rot_button_OnClick()

8) ind = document.command_form.rot_value.selectedIndex

9) rotation = document.command_form.rot_value.options(ind).value

10) document.SURFAPP.executeIDLCommand(“SHADE_SURF, a, AZ=”+rotation)

11) end sub

12) </SCRIPT>

13) </HEAD>

14) <BODY>

Lines 15 - 24 create an IONGraphicApplet applet named “SURFAPP” that generates some
data and creates a shaded surface. Note that the CODEBASE attribute is set to “../classes”.
This is the proper path for the example as installed with the ION documentation files.

15) <APPLET NAME=”SURFAPP” CODE=com.rsi.ion.IONGraphicApplet.class

16) CODEBASE=”../classes” WIDTH=200 HEIGHT=200>

17) <PARAM NAME=”DEBUG_MODE” VALUE=”YES”>

18) <PARAM NAME=”SERVER_DISCONNECT” VALUE=”NO”>

19) <PARAM NAME=”DECOMPOSED_COLOR” VALUE=”NO”>
ION Guide Example: Using VBScript

30 Chapter 3: Using ION’s Java Applets
20) <PARAM NAME=”IDL_COMMAND_0”

21) VALUE=”a = EXP(-(SHIFT(DIST(30), 15, 15)/7)^2)”>

22) <PARAM NAME=”IDL_COMMAND_1” VALUE=”LOADCT, 5”>

23) <PARAM NAME=”IDL_COMMAND_2” VALUE=”SHADE_SURF, a”>

24) </APPLET>

VBScript input controls must be contained in an HTML form.

25) <FORM NAME=”command_form”>

26)

Lines 27 - 34 create the pulldown menu of rotation values.

27) <SELECT NAME=”rot_value” SIZE=1>

28) <OPTION VALUE=15>15

29) <OPTION VALUE=30 SELECTED>30

30) <OPTION VALUE=45>45

31) <OPTION VALUE=60>60

32) <OPTION VALUE=75>75

33) <OPTION VALUE=90>90

34) </SELECT>

Line 35 creates the “Rotate Surface” button. The rot_button_OnClick() VBScript
subroutine is called automatically when this button is clicked.

35) <INPUT TYPE=BUTTON NAME=”rot_button” VALUE=”Rotate Surface”>

36) </FORM>

37) </BODY>

38) </HTML>

Notes on the Differences Between the JavaScript and VBScript Versions
1. Interaction between the applet and the script language takes place in JavaScript statements

in the Netscape Navigator version, and in VBScript statements in the Microsoft Internet
Explorer version. The syntax of the scripting language is slightly different.

2. In the JavaScript version, the applet is included within the HTML FORM definition.
Internet Explorer requires that the applet be located outside the FORM.

3. In JavaScript, you must explicitly tie a control (a button, for example) to a JavaScript
function. VBScript automatically looks for a subroutine name based on the name of the
button.
Example: Using VBScript ION Guide

Chapter 4

ION Java Classes

The following topics are covered in this chapter:

What are the ION Graphics Classes? ... 32
Using the Graphics Classes 33
What are the Low-Level Classes? 34
31

32 Chapter 4: ION Java Classes
What are the ION Graphics Classes?
The ION Graphic Component Java Classes are a set of high level Java classes that provide
a rapid and powerful way to include IDL graphics in a Java application or Java applet. The
Graphic Component classes are built from the ION Low-Level classes, and provide a
simpler interface, which allows you to connect to the ION Server and display graphics
generated by IDL. The ION Graphics classes were developed using the Java Developer’s
Kit (JDK) version 1.02.

IONGr Graphic Objects
IONGr Graphic objects are high-level objects that encapsulate ION connections and
various types of graphics.

IONGrConnection
An IONGrConnection object provides a connection between the ION Server and the
client. In addition to establishing and ending the connection, IONGrConnection allows
you to get and set the values of IDL variables on the ION Server, add and remove drawable
objects to the connection, and execute IDL commands directly.

IONGrContour
An IONGrContour object represents a contour graphic. IONGrContour allows you to get
and set properties of the contour plot (via keywords to the IDL CONTOUR routine) and
to draw the contour object. IONGrContour extends IONGrGraphic.

IONGrDrawable
An IONGrDrawable object creates a drawing area that presents graphics produced by the
ION Server. IONGrDrawable allows you to configure the drawing area to draw one or
more objects, add and remove graphic objects from a drawable, and execute IDL
commands directly. Objects of this type can be inserted into the AWT tree.

IONGrGraphic
An IONGrGraphic object provides methods used to manage graphic properties. The
other IONGr objects implement this object. IONGrGraphic allows you to get and set
graphic properties, and to manage property lists for the graphic object.

IONGrPlot
An IONGrPlot object represents an plot graphic. IONGrPlot allows you to get and set
properties of the plot (via keywords to the IDL PLOT routine) and to draw the plot object.
IONGrPlot extends IONGrGraphic.

IONGrSurface
An IONGrSurface object represents a surface graphic. IONGrSurface allows you to get
and set properties of the surface (via keywords to the IDL SURFACE routine) and to draw
the surface object. IONGrSurface extends IONGrGraphic.
What are the ION Graphics Classes? ION Guide

Chapter 4: ION Java Classes 33
ION Graphic Objects
ION Graphic objects extend the IONGrDrawable object and contain one of the ION
graphic type objects (plot, surface, contour). ION Graphic objects can be inserted into a
Java AWT tree.

IONContour
An IONContour object represents a contour graphic and a drawing area. IONContour
allows you to get and set properties of the contour (via keywords to the IDL CONTOUR
routine) and to draw the contour object. IONContour extends IONGrDrawable and
includes an IONGrPlot object.

IONPlot
An IONPlot object represents a plot and a drawing area. IONPlot allows you to get and
set properties of the plot (via keywords to the IDL PLOT routine) and to draw the pot
object. IONPlot extends IONGrDrawable and includes an IONGrPlot object.

IONSurface
An IONSurface object represents a surface graphic and a drawing area. IONSurface
allows you to get and set properties of the surface (via keywords to the IDL SURFACE
routine) and to draw the surface object. IONSurface extends IONGrDrawable and
includes an IONGrSurface object.

Using the Graphics Classes
The ION Graphics classes have a number of common features. The contour, plot, and
surface objects all allow you to set the data values, retrieve and set properties, and draw
the object. See the reference information on each object for a complete list of methods.

Setting Values
The ION Graphics objects that include data all allow you to set the initial data values
when you create the object. You can also reset the data values using the setXValue /
setYValue / setZValue methods. The set methods enable you to change the value of
the displayed data on the fly without re-creating the object in question.

Getting and Setting Properties
The contour, plot, and surface objects can all be modified by changing the value of a set
of properties associated with the objects. The list of properties available for modification
is a subset of the list of properties controlled by keywords to the corresponding IDL Direct
Graphics routine (CONTOUR, PLOT, or SURFACE). Consult the IDL Reference Guide
for details about the settings for individual properties.

Drawing
With the exception of the IONGrConnection object, all of the ION Graphics objects have
a draw method. Calling the draw method on a given object causes it to be displayed in
the associated drawing area.
ION Guide Using the Graphics Classes

34 Chapter 4: ION Java Classes
What are the Low-Level Classes?
The ION Low-Level classes are the most basic building blocks of ION applications. They
provide a degree of control not available to the user of the ION Graphics Component
classes; therefore they require more sophisticated Java programming skills to use. The
ION Low-Level classes were developed using the Java Developer’s Kit (JDK) version 1.02.

IONCallableClient
IONCallableClient provides mechanisms to handle communication with the server,
execution of IDL commands, retrieving IDL command log output and the getting and
setting of IDL variables on the ION Server. Objects of this type can be inserted into the
AWT tree.

IONCanvas
This class represents a visible drawing area upon which graphics can be displayed.

IONCommandDoneListener
This interface defines the method an object must implement to receive notification that
an IDL command has completed.

IONComplex
This class represents a single-precision complex number.

IONDComplex
This class represents a double-precision complex number.

IONDrawable
This interface defines the methods that an object must implement to act as an ION
drawable object. An ION drawable is an object that can be drawn to by an
IONGraphicsClient.

IONGraphicsClient
This class provides mechanisms to handle the processing of graphic primitive data sent
from the ION Server. Information sent by the server is read by mechanisms provided by
the superclass IONCallableClient and dispatched to the handleServerAction()
method of this class.

IONMouseListener
This interface defines the callback methods that an object must define to be notified of
mouse events occurring on an object that implements the IONDrawable interface.

IONOffScreen
This object represents an invisible drawing area on which graphic output can be placed.
What are the Low-Level Classes? ION Guide

Chapter 4: ION Java Classes 35
IONOutputListener
This interface defines the method that an object must implement to receive ION Server
output text.

IONPaletteFilter
This class is used to implement an ION version of a Java ImageFilter. This image filter is
used to change the color pallet (color table) being used. The Java Image scheme uses an
image filter object to change attributes and perform operations on images; objects of the
IONPalletFilter class are used to change the color table when using an indexed-color
model system.

IONVariable
This object is a client side representation of an IDL variable. IONVariable objects are used
to read and write data between the IDL server and clients.

IONWindow
This class extends the Java Frame class to let ION windows have access to top-level
window events. Objects of the IONWindow class need an object of the
IONWindowingClient class registered with them as a callback object in order to handle
“destroy” events.

IONWindowingClient
This class provides mechanisms to handle the processing of the windowing commands
that are part of an IDL Direct graphics driver. This includes the creation, deletion,
showing, hiding, and iconization of windows on the client.
ION Guide What are the Low-Level Classes?

36 Chapter 4: ION Java Classes
What are the Low-Level Classes? ION Guide

Chapter 5

Building ION Applets
and Applications

The following topics are covered in this chapter:

Creating Applets 38
Compiling Applets 38
Including Applets in HTML Pages 39
Supporting Java Archive Files 39
Error Handling and ION Exceptions 41
Simple Applet Example 42
Debug Mode 45
The ION Device 45
Tips and Tricks 48
37

38 Chapter 5: Building ION Applets and Applications
It is beyond the scope of this manual to discuss all of the elements that go into creating a
Java applet. We assume that you are already familiar with the process of creating applets,
and focus here on details that are specific to building ION applets.

You will find details on the ION Java classes used to build ION applets in “ION Java
Classes” on page 31 and in the “ION Class and Method Reference” on page 69.

Creating Applets
When creating your ION applet, keep the following points in mind.

Import the ION Package
In addition to the standard Java packages (and any other packages used in your applet),
you must import the ION package with the statement:

import com.rsi.ion.*

ION Applets Extend the Java Applet Class
ION applets are subclassed from (they extend) the Java Applet class. When defining your
applet class, use a statement like the following:

public class MyIONApplet extends Applet

where MyIONApplet is the name of your applet class.

See “Simple Applet Example” on page 42 for an example.

Compiling Applets
Keep the following points in mind when you compile the .java file that contains your
applet code into an applet:

Set the Class Path
When you compile your applet, the ION class files must be in the Java complier’s class
path. Depending on your specific Java compiler, you may set the class path by defining
the CLASSPATH environment variable or by changing settings in a dialog.

Since ION is a package, the class files are stored in a directory structure. The name of the
ION package is com.rsi.ion, so the classes are located in the following directory:

ROOT_DIR/com/rsi/ion

Where ROOT_DIR is the path to the classes subdirectory of the main ION directory.
For example, if you have installed ION in the directory /usr/local/rsi/ion, the
actual location of the ION class files would be:

/usr/local/rsi/ion/classes/com/rsi/ion

and ROOT_DIR would be

/usr/local/rsi/ion/classes
Creating Applets ION Guide

Chapter 5: Building ION Applets and Applications 39
In this case, you would set your CLASSPATH environment variable with the following
shell command:

setenv CLASSPATH ".;/usr/local/rsi/ion/classes"

(or however you set env variables on your system). The Java compiler will add the
com/rsi/ion portion of the path when it looks for the package.

Once the CLASSPATH is set, you can compile your code with a shell command like the
following:

javac myIONApplet.java

where myIONApplet is the name of your applet.

Including Applets in HTML Pages
To include your compiled applet in an HTML page, use the <APPLET> tag with the NAME,
CODE, WIDTH, and HEIGHT attributes:

<APPLET NAME=”myIONApplet” CODE=myIONApplet.class
WIDTH=300 HEIGHT=300 >

</APPLET>

For more information, see “Using ION Applets” on page 12.

Locating the Class Files for use by ION Applets
ION applets must have access to the ION class files in order to run. While you can use the
CODEBASE attribute to specify a relative path from the location of an HTML page
containing an ION applet tag to the location of the class files, it is often easier to copy the
class files (or provide a symbolic link, if your system supports symbolic links) to another
directory located in or near the directory containing your HTML files.

For example, suppose you have located your HTML pages in a directory named
public_html. You may wish to place the ION package, the ION zip file, and the ION jar
file in a subdirectory of public_html named java. If you then include any ION applet
class files you create in the java directory, you could simply specify:

CODEBASE=”./java”

in the <APPLET> tag used in your HTML page.

See the discussion of the CODEBASE attribute on page 13 for further details.

Supporting Java Archive Files
When a web browser encounters an HTML page that contains a Java applet, the class files
that make up the applet are downloaded from the web server into the browser. The applet
is executed only after all of the necessary class files have been downloaded. Because a
separate HTTP connection between the client and the server is established for each class
ION Guide Including Applets in HTML Pages

40 Chapter 5: Building ION Applets and Applications
file, the download time for a large applet (an applet with many class files) can be
substantial.

To increase the download performance of Java applets, the Java 1.1 specification includes
the concept of a Java ARchive file, or jar file, that can contain multiple class files, thus
avoiding the need for multiple connections. A jar file can also be compressed, further
speeding the download process. Unfortunately, many of the web browsers in current use
do not support the jar format. To make matters even more complicated, some browsers
that do not support the compressed jar format do support uncompressed archives in
zip format.

To support the different methods used by different browsers to download Java class files,
ION provides three separate versions of the ION class library. These are:

1. The raw Java class files, contained in the com/rsi/ion directory structure installed in
the classes directory of the ION distribution. Each file is downloaded to the browser
via a separate connection to the server. The raw Java class files are used by browsers that
don’t support the ARCHIVE attribute to the APPLET tag. For example, version 3 of
Microsoft’s Internet Explorer does not support the ARCHIVE attribute.

2. An uncompressed zip file named ion_release.zip that contains all of the Java class
files included in the ION package, with the exception of the class files for the ION pre-built
applets. This zip file is located in the classes directory of the ION distribution, and can
be downloaded via a single connection to the server. The zip file can be used by browsers
that support the ARCHIVE attribute, but which don’t support compressed archive files.
For example, version 3 of Netscape’s Navigator supports the ARCHIVE attribute but does
not support jar files.

3. A compressed Java ARchive (jar) file named ion_release.jar that contains the Java
class files included in the ION package, with the exception of the class files for the ION pre-
built applets. This jar file is located in the classes directory of the ION distribution, and
can be downloaded via a single connection to the server. The jar file can be used by
browsers that support compressed archive files. For example, version 4 and later of
Netscape’s Navigator supports jar files.

Supporting Multiple Browser Types
Use the following procedure to create a set of HTML pages that will use the most efficient
download method for any of the three browser types defined above.

1. Ensure that the archive files and the root of the unarchived package hierarchy are all in
the same directory. By default, all three are located in the classes subdirectory of the
ION distribution. This directory should be specified via the CODEBASE attribute to the
APPLET tag.

2. Create two versions of each HTML page that contains an ION applet. One page should
include a reference to the uncompressed archive file via the ARCHIVE attribute to the
APPLET tag (ARCHIVE=ion_version.zip). The other page should include a reference
to the compressed archive file (ARCHIVE=ion_version.jar). Browsers that do not
support the ARCHIVE attribute will ignore it and download the unarchived files.
Supporting Java Archive Files ION Guide

Chapter 5: Building ION Applets and Applications 41
3. Create a “switch page” that includes JavaScript. The switch page determines which version
of the browser is present and loads the appropriate HTML page.

<SCRIPT language="JavaScript">

<!--

navigator.onerror = null;

version = (parseInt(navigator.appVersion) > 3 ? "4" : "3");

if(version == "4"){

// Version 4 can handle jar files, load the Jar page

location.replace("<JAR_page>.html");

}else{

location.replace("<ZIP_page>.html");

}

// -->

</SCRIPT>

where <JAR_PAGE>.html is the name of the HTML page that references the
ion_release.jar file and <ZIP_PAGE>.html is the name of the HTML page that
references the ion_release.zip file. For example, you may name the page that
references the JAR file myfile_j.html and the file that references the ZIP file
myfile_z.html.

Error Handling and ION Exceptions
When the ION Server detects an error, it returns an exception value you can detect and
act upon using error-handling code. Consult the reference page for the method you are
using to determine which exceptions ION can detect in a given situation.

Error handling is generally accomplished via a Java try/catch code segment. The
following skeleton try/catch code illustrates how to catch errors and display an error
message on the Java console. For a more detailed example, see “Java Applet Examples” on
page 27.

Note If an ION method (or any Java method, for that matter) returns a checked exception
value, you must handle the exception in your code. The Java compiler will complain
if you do not properly handle all possible exception values.

try{

some ION command

}catch(IOException e) {

// IO Error

System.err.println("Error: Communication error");

return;

}catch(IONIllegalCommandException e){
ION Guide Error Handling and ION Exceptions

42 Chapter 5: Building ION Applets and Applications
// Illegal Command

System.err.println("Error: Illegal Command");

return;

}catch(IONSecurityException e){

// Security Violation

System.err.println("Error: Security Violation");

return;

}

}

Simple Applet Example
The following Java code creates a simple applet that displays an IDL graphic. The
numbers to the left of the code are included for purposes of discussion only; do not
include the numbers in your .java file. The example constructs an applet named
IONGrEx1App; the code is saved in a file named iongrex1app.java.

Note The characters “//” denote comments in Java code.

Lines 1-4 import the Java packages used by the applet.

1) import java.awt.*;

2) import java.applet.*;

3) import java.io.*;

4) import java.net.*;

Import the ION package.

5) import com.rsi.ion.*;

Declare the applet class. This class, IONGrEx1App, is an extension (a subclass of) Java’s
Applet class.

6) public class IONGrEx1App extends Applet

7) {

Declare the ION Variables that the applet will use. The c_ionCon variable will hold the
IONGrConnection object, which manages the connection to the ION Server, and the
c_ionDrw will hold the IONGrDrawable object.

8) IONGrConnection c_ionCon;

9) IONGrDrawable c_ionDrw;

The init method is the first method called with the applet starts.

10) // ******************************
Simple Applet Example ION Guide

Chapter 5: Building ION Applets and Applications 43
11) // Init Method

12) // ******************************

13) public void init()

14) {

Create ION objects using variables defined in lines 8-9.

15) // Create connection and drawable objects

16) c_ionCon = new IONGrConnection();

17) c_ionDrw = new IONGrDrawable(this.size().width
this.size().height);

Line 18 initializes the widget geometry manager, and line 19 adds the ION drawable to
the Applet’s AWT (widget) tree.

18) setLayout(new GridLayout(1, 1)); // this is the widget geometry man-
ager.

19) add(c_ionDrw);

Connect to the ION Server. Since the connect method can throw exceptions, the connect
method must be wrapped in a try/catch block. Since we are building an applet, which can
only connect to the machine it was downloaded from, we first get the host information
from the applet class using the getCodeBase().getHost(); methods.

20) try {

21) c_ionCon.connect(this.getCodeBase().getHost());

22) }catch(IOException e) {

23) // IO Error

24) System.err.println("Error: Communication error");

25) return;

26) }catch(IONIllegalCommandException e){

27) // Illegal Command

28) System.err.println("Error: Illegal Command");

29) return;

30) }catch(IONSecurityException e){

31) // Security Violation

32) System.err.println("Error: Security Violation");

33) return;

34) }

Set our color mode so that 8 bit color will work on 8-bit and 24-bit displays.

35) c_ionCon.setDecomposed(false);
ION Guide Simple Applet Example

44 Chapter 5: Building ION Applets and Applications
Add the IONGrDrawable to the ION connection:

36) c_ionCon.addDrawable(c_ionDrw);

Send the IDL commands to the server. Must wrap in a try/catch block just in case there is
an IO/Network error.

37) // Issue IDL commands to generate a plot

38) try {

39) // Set the color table

40) c_ionCon.executeIDLCommand(“loadct, 15”);

41) // Create some data

42) c_ionCon.executeIDLCommand(“a = dist(30)”);

43) // Draw a contour plot

44) c_ionCon.executeIDLCommand(“show3, a”);

45) } catch(IOException e) {

46) System.err.println(“Error: Communication error”);

47) // Write the message on the applet

48) Graphics g = c_ionDrw.getGraphics();

49) g.setColor(Color.red);

50) g.drawString(“Error: Communication error”, 5, size().height/2);

51) }

52) }

The destroy method is called when the browser kills the applet. We override it here so that
we can disconnect from the ION Server. This is very important — if the user doesn’t
disconnect from the server when the applet is destroyed, the browser may stop
responding until the connection times out (about a minute).

53) public void destroy(){c_ionCon.disconnect();}

54) }

Further Examples
Example code illustrating ION features is included in the installed ION distribution. You
will find example HTML files located in subdirectories of the examples directory in your
installed ION distribution. Browse through the example code starting with the file
examples.html in the examples directory. Many of the examples allow you to view the
Java source for the example within your browser. The HTML version of the ION User’s
Guide (this document) includes links to the installed example HTML files.

The raw Java source files for the example ION classes are included in the src subdirectory
of the classes directory. Also included in the src subdirectory are a number of IDL .pro
files that are called by the ION demonstration applets. In order to use the ION demos on
Simple Applet Example ION Guide

../examples/examples.html

Chapter 5: Building ION Applets and Applications 45
your own system, you must add the directory RSI_DIR/ion_1.1/classes/src to
IDL’s path. See “Location of IDL .pro Files” on page 223.

Note For the examples to function properly, you must have the ION Server running on
your machine. If you do not yet have the ION Server running on your system, visit
Research Systems’ ION web site and view example code there.

Debug Mode
The IONGrConnection object supplies a debugMode() method that allows you to view
the IDL command log output by holding down the Shift key and clicking on the ION
drawing area associated with the connection. Set debug mode by adding the following to
the Java code that establishes the connection to the ION Server:

connection.debugMode(true);

where connection is the IONGrConnection object.

When debug mode is in effect, holding down the Shift key and clicking on the ION
drawing area will pop up a separate window that displays the output that would appear
in the IDL command log.

The ION Device
IDL uses the concept of a current graphics device when creating and displaying IDL Direct
Graphics. When the ION Server requests graphics from IDL, it automatically sets the
current graphics device to ’ion’; graphics output from IDL is sent directly to the ION
Server. You do not need to explicitly set the graphics device to ’ion’ unless you have
explicitly used the IDL SET_PLOT procedure to change the current device to some other
device.

For example, suppose you wish to include a “Print” button in a Java applet. Your applet
might include something like the following:

executeIDLCommand(“SET_PLOT, 'printer'”)

execute more IDL commands to draw an image on the printer

executeIDLCommand(“SET_PLOT, 'ion'”)

Keywords Accepted by the ION Device
The following keywords to the IDL DEVICE routine are available when the current
graphics device is set to 'ion' . Except where indicated, keywords to the ION device work
just as they do for other IDL graphics devices.

COPY
Use this keyword to copy a rectangular area of pixels from one region of a window to
another. COPY should be set a six or seven element array: [Xs, Ys, Nx, Ny, Xd, Yd, W],
where: (Xs, Ys) is the lower left corner of the source rectangle, (Nx, Ny) are the number of
ION Guide Debug Mode

http://nucleus.rsinc.com

46 Chapter 5: Building ION Applets and Applications
columns and rows in the rectangle, and (Xd, Yd) is the coordinate of the destination
rectangle. Optionally, W is the index of the window from which the pixels should be copied
to the current window. If it is not supplied, the current window is used as both the source
and destination.

DECOMPOSED
This keyword is used to control the way in which graphics color index values are
interpreted when using displays with decomposed color (TrueColor visuals). This
keyword has no effect with other types of visuals.

Set this keyword to 1 to cause color indices to be interpreted as 3, 8-bit color indices where
the least-significant 8 bits contain the red value, the next 8 bits contain the green value,
and the most-significant 8 bits contain the blue value. This is the way IDL has always
interpreted pixels when using visual classes with decomposed color.

Set this keyword to 0 to cause the least-significant 8 bits of the color index value to be
interpreted as a PseudoColor index. This setting allows users with TrueColor displays to
use IDL programs written for standard, PseudoColor displays without modification.

In older versions of IDL, color index values higher than !D.N_COLORS-1 were clipped to
!D.N_COLORS-1 in the higher level graphics routines. In some cases, this clipping caused
the exclusive-OR graphics mode to malfunction with raster displays. This clipping has
been removed. Programs that incorrectly specified color indices higher than
!D.N_COLORS-1 will now probably exhibit different behavior.

FONT
Set this keyword to a scalar string specifying the name of the font used when the hardware
font is selected.

Note The hardware fonts available are supplied by Java itself, not the platform on which
IDL is running. Java’s font system supplies several standard fonts, with the following
font names: “Helvetica”, “TimesRoman”, “Courier”, “Dialog”, “DialogInput”,
“ZapfDinbats”, and “default”. These font names will map to different actual fonts on
different platforms, but will always be handled gracefully by Java. If you specify a
different font, Java will substitute one of the standard fonts automatically.

Note that hardware fonts cannot be rotated, scaled, or projected, and that the “!”
commands accepted for vector fonts for subscripts and superscripts may not work. When
generating three-dimensional plots, it is best to use the vector-drawn characters because
IDL can draw them in perspective with the rest of the plot.

The GET_FONTNAMES keyword, described below, can be used to retrieve a list of
available fonts.

The FONT keyword should be set to a string with the following form:

DEVICE, FONT="font*modifier1*modifier2*...modifiern"

where the asterisk (*) acts as a delimiter between the font’s name (font) and any
modifiers. The string is not case sensitive. Modifiers are simply “keywords” that change
aspects of the selected font. Valid modifiers are:
The ION Device ION Guide

Chapter 5: Building ION Applets and Applications 47
• For font size: Any number is interpreted as the point size of the font to use.

• For font weight: PLAIN, BOLD

• For font angle: ITALIC

For example, the following commands tell ION to use hardware fonts, change the font,
and then make a simple plot:

executeIDLCommand(“!P.FONT = 0”)

executeIDLCommand(“DEVICE, FONT = ‘HELVETICA*ITALIC*24’”)

executeIDLCommand(“PLOT, FINDGEN(10), TITLE = ‘IDL Plot’”)

GET_CURRENT_FONT
Set this keyword to a named variable in which the name of the current font is returned as
a scalar string.

GET_FONTNAMES
Set this keyword to a named variable in which a string array containing the names of
available fonts is returned. If no fonts are found, a null scalar string is returned. This
keyword must be used in conjunction with the FONT keyword. Set the FONT keyword
to a scalar string containing the name of the desired font or a wildcard.

GET_GRAPHICS_FUNCTION
Set this keyword to a named variable that returns the value of the current graphics
function (which is set with the SET_GRAPHICS_FUNCTION keyword). This can be
used to remember the current graphics function, change it temporarily, and then restore
it. See the SET_GRAPHICS_FUNCTION keyword for an example.

GET_SCREEN_SIZE
Set this keyword to a named variable in which to return a two-word array that contains
the width and height of the server’s screen, in pixels.

SET_CHARACTER_SIZE
The standard size and vertical spacing of vector-drawn fonts can be changed by specifying
this keyword with a two-element vector. The first element specifies the new character
width and thus the height of the characters (because vector-drawn fonts have a fixed
aspect ratio). The second element specifies the vertical distance between lines. The default
produces a character that is approximately 8 pixels wide, with 12 pixels between lines.

SET_GRAPHICS_FUNCTION
Most window systems allow applications to specify the graphics function. This is a logical
function which specifies how the source pixel values generated by a graphics operation
are combined with the pixel values already present on the screen. ION supports only the
following two of the fifteen graphics functions supported by IDL Direct Graphics:

Logical Function Code Definition
GXcopy 3 source
ION Guide The ION Device

48 Chapter 5: Building ION Applets and Applications
The default graphics function is GXcopy, which causes new pixels to completely overwrite
any previous pixels. Not all functions are available on all window systems.

See “IDL Graphics Devices” in the IDL Reference Guide for more information about how
IDL handles graphics devices. Note that because ION was released after IDL version 5.0,
the ION device does not appear in the list of supported devices in the IDL 5.0
documentation.

Tips and Tricks
This section includes suggestions that may be useful in some situations. Make sure your
installation meets the criteria defined here before implementing any of these suggestions.

Local Netscape Users
If your installation is used only by a known set of users who all use Netscape’s Navigator
version 4 or later, you can eliminate the need to download the Java class files when an
applet loads. Do the following:

1. Have each of your users install a copy of the ion_release.jar file in the
Program/java/classes subdirectory of their local Netscape directory.

2. Remove the ARCHIVE attribute from the APPLET tag in your HTML code.

Caution The Java security mechanism requires that applet classes must be loaded from the
server on which ION is running. This means that the approach described here will
fail with a security error if the applet class files are not located in the com/rsi/ion
subdirectory of the directory specified by the CODEBASE attribute.

Destroy Methods
If your applet includes a destroy() method, it will be invoked automatically when the
browser shuts down. Depending on the browser, the destroy() method may also be
invoked when a user resizes page containing the applet, opens a new web page, or
performs some other action.

It is good practice to include a destroy() method in your applets that closes the ION
connection and does any other cleanup that may be necessary.

Client-side Animation
IDL’s animation routines all rely on the IDL widget toolkit, and are thus not suitable for
use with ION. You can, however, use IDL to create the individual frames of an animation
and create an ION applet to build an array of frames and display the animation on the
client side (in a browser or Java application).

GXxor 6 source XOR destination

Logical Function Code Definition
Tips and Tricks ION Guide

Chapter 5: Building ION Applets and Applications 49
An example application that does this sort of client-side animation is included in the ION
distribution. Point your browser at the file animation.html in the demo subdirectory
of the examples directory. The Java sources for the animation classes are included in the
src subdirectory of the classes directory. Note that the animation demo relies on an
IDL .pro file; see “About the Example Code” on page 5.

Deciding Which Canvas Graphics Object to Use
There are two distinct graphics canvases available to you as a creator of ION applications.
One canvas is created and managed by IDL, the other by the Java graphics system. In the
event that you wish to draw directly onto the displayed image (when creating an
annotation or selecting a region of interest, for example), you will have to decide which
of the two canvases is appropriate.

If you decide to draw directly on the ION canvas, use the getIONGraphics() method
on an IONDrawable object to get access to the drawable area created by IDL. If you prefer
to do your drawing independent of the IDL graphics, use the getGraphics() method
instead.

An example application that draws a region of interest bounding box on a Java graphics
canvas is included in the ION distribution. Point your browser at the file
imageproc.html in the demo subdirectory of the examples directory. The Java
sources for the image processing and ROI classes are included in the src subdirectory of
the classes directory. Note that the image processing demo relies on an IDL .pro file;
see “About the Example Code” on page 5.
ION Guide Tips and Tricks

50 Chapter 5: Building ION Applets and Applications
Tips and Tricks ION Guide

Chapter 6

Configuring
the ION Server

The following topics are covered in this chapter:

Command Security 52
The ION Daemon 53
The ION HTTP Tunnel Broker 58
ION Command-Line Utilities 60
ION Windows NT Utilities 62
The ION Server Process 65
Configuration Details 66
51

52 Chapter 6: Configuring the ION Server
ION is a Callable IDL application that processes requests from clients and returns
graphics and data to the client. ION consists of two applications: the ION Daemon, which
watches a port on the server machine and sets up a connection between the client
application (a Java applet) and the ION Server process. The ION Server process accepts
requests from the client application, uses IDL to manipulate data and generate graphics,
and returns the results to the client.

Normally, ION uses a persistent two-way socket connection between the client and the
server. If your site is isolated from the bulk of the Internet behind a firewall, persistent
two-way connections may not be allowed. ION provides an HTTP Tunnel Broker to allow
ION sessions to operate through most firewalls. See “The ION HTTP Tunnel Broker” on
page 58 for details on the ION Tunnel Broker.

Note ION Servers are available only for systems running one of the following operating
systems:

• Digital Unix 4.0 and later

• HP/UX 10.01 and later

• AIX 4.1 and later

• Linux kernel 2.0.18 and later

• Irix 5.3, 6.2 and later

• SunOS 4.1.3 and later

• Solaris 2.5 and later

• Microsoft Windows NT 4.0 and later

Command Security
The ION Server implements a security system based on IDL command filtering. The
security system has two internal command lists: one list consists of commands that are
not allowed to be run on the IDL server process; the other list specifies commands which
are allowed. (If an IDL command is included in both lists, it will not be allowed to run.)

When an ION client sends an IDL command to the ION Server for execution, the
command line is scanned for function and procedure names. These names are first
checked against the command inclusion list (commands that can be run on the server),
and if the command is not in the list it is rejected. If the command inclusion check passes,
the routine is the checked against the command exclusion list (routines that should not
be run on the server). If the command is in the command exclusion list it is rejected. If
the command passes the exclusion list check, it is sent to the ION Server process for
execution.

Note ION’s command security configurations are designed to prevent IDL commands
from being used in an unauthorized or hostile manner during connections to your
ION Server. Remember that you must also properly configure your Web server to
prevent unauthorized access to your site via other mechanisms.
Command Security ION Guide

Chapter 6: Configuring the ION Server 53
Security Command Files
The ION Server allows the user to specify IDL commands to be included or excluded from
the server via text files. Inclusion and exclusion text files consist of a single command on
each line. Lines that are blank or start with the "#" character are ignored. For example, you
could create an ION exclude file containing the following lines:

My commands to prevent

myPlot

myProcess

myFunction

Security command files are specified on the command line when the ION Daemon is
started. See “The ION Daemon” on page 53 for details.

Client Verification
When the ION Daemon detects an incoming server connection, the daemon verifies that
the client is a valid ION client. ION clients are valid if they have been created using the
ION Java classes described in this document. If the client is not valid, the daemon rejects
the connection and no ION Server process is started.

Connection Limit
There are two limits set on the number of connections the ION Server will accept. If you
have specified a maximum number of connections via the maxconn switch to the ION
Daemon process, the ION Daemon will reject new clients after reaching that limit. If no
maximum number of connections is specified to the daemon, the maximum number of
connections allowed is defined by the ION Server license. If the limit is reached, the ION
Daemon will notify new ION clients that the limit has been reached and will close the
connection.

Starting an ION Server Process
Once the client has been verified by the daemon and all other checks have passed, the ION
Daemon begins an ION Server process and connects the ION client with the process.
Once the client has been connected to the server process, the ION Daemon returns to
processing incoming requests. When the ION Server process dies, the daemon is notified.

The ION Daemon
The ION Daemon is a process that listens to a specified socket port, waiting for a
communication request. Once a connection is received and verified, the daemon starts up
an ION Server process, connects the client to the server process and waits for further
connection requests.

Start the ION Daemon process by executing the iond command at the shell prompt
(under Windows NT, you must open a Command Prompt window to execute the
command):
ION Guide The ION Daemon

54 Chapter 6: Configuring the ION Server
$ RSI_DIR/ionrelease/bin/iond [switches]

where RSI_DIR is the path to the installation directory, ionrelease is the name of the
ION directory, and [switches] are optional command-line parameters discussed below.

Note If you have installed and started the ION Daemon service on your Windows NT
machine, you do not need to execute the iond command manually. See “Installing
the ION Daemon Service under Windows NT” on page 61 for details. If you run the
iond command manually and have specified a log file in the ION Properties dialog
(see “ION Windows NT Utilities” on page 62), all ION Daemon output will be
redirected to the log file. While the Daemon is functioning normally, appears to have
“hung,” because no output appears on your screen.

The ION Daemon is responsible for the following:

• Parsing command line parameters,

• Establishing the security level and initializing security levels,

• Maintaining server logs,

• Managing the number of current connections,

• Receiving connections and starting ION Server processes,

• Verifying incoming requests as valid ION clients.

Command Line Parameters
The following command line parameters are accepted by the ION Daemon

-exfile=filename
Set this switch to the name of a file that contains a list of IDL commands (procedure or
function names) that the server should not accept. Any command that attempts to
execute one of the listed routines will be rejected. The file should contain one routine
name on each line. Blank lines and lines that begin with the "#" character are ignored.

Specifying an exclude file will not alter the list of routines rejected as a result of the setting
of the security switch.

-infile=filename
Set this switch to the name of a file that contains a list of IDL commands (procedure or
function names) that the server should accept. Any command that attempts to execute a
routine that is not in the list will be rejected. The file should contain one routine name on
each line. Blank lines and lines that begin with the "#" character are ignored.

Specifying an include file will not alter the list of routines rejected as a result of the setting
of the security switch.

Note If a routine is excluded (either via an exclude file, a list of excluded routines, or via the
security switch), it will be rejected even if that routine is also included in an include
file or list.
The ION Daemon ION Guide

Chapter 6: Configuring the ION Server 55
-excomm="routine 0, routine 1,...routine n"
Set this switch to a comma-separated list of IDL commands (procedure or function
names) to add to the exclusion list. This switch works in the same way as the exfile
switch; it is provided as a convenience.

Specifying a list of routines to exclude will not alter the list of routines rejected as a result
of the setting of the security switch.

-incomm="routine 0, routine 1, ...routine n"
Set this switch to a comma-separated list of IDL commands (procedure or function
names) to add to the inclusion list. This switch works in the same way as the infile
switch; it is provided as a convenience.

Specifying a list of routines to include will not alter the list of routines rejected as a result
of the setting of the security switch.

Note If a routine is excluded (either via an exclude file, a list of excluded routines, or via the
security switch), it will be rejected even if that routine is also included in an include
file or list.

-idldir=path [Windows NT only]
Set this switch to override the value contained in the Windows registry (or in an the
IDL_DIR environment variable) and specify the location of the IDL directory. See
“Configuration Details” on page 66 for details.

-iondir=directory path
Set this switch to the location of the ION directory. ION is always located in a directory named
ion in the directory specified at installation. By default, the ION directory is
/usr/local/rsi/ion.

-http
Set this switch to start the ION HTTP Tunnel Broker when starting the ION Daemon. See
“The ION HTTP Tunnel Broker” on page 58 for details on the ION Tunnel Broker.

-httplog=filename [Windows NT only]
Set this switch to the name of the file in which you wish to save informational messages
from the ION Tunnel Broker. If no logfile is specified, messages will be written to the
standard output. (Under Unix, you can create a log file by redirecting the output from
ion_httpd to a log file of your choosing using the normal system output redirection
mechanism.)

-httpport
Set this switch to the port number that the ION HTTP Tunnel Broker should watch for
connection requests. If you do not specify a value for the httpport switch, the ION
Tunnel Broker watches port 9085.
ION Guide The ION Daemon

56 Chapter 6: Configuring the ION Server
-httptimeout=n
Set this switch to the number of minutes the ION Tunnel Broker HTTP peer should stay
alive for without hearing from the client. A timeout is necessary to close Tunnel Broker
peer processes that may be left running if a browser crashes or experiences some other
error that disconnects the browser without shutting down the peer process. If n is 0 (zero)
the peer will never time out.

-logfile=filename [Windows NT only]
Set this switch to the name of the file in which you wish to save informational messages
from the ION Daemon. If no logfile is specified, messages will be written to the standard
output. (Under Unix, you can create a log file by redirecting the output from iond to a
log file of your choosing using the normal system output redirection mechanism.)

-maxconn=N
Set this switch to the maximum number of connections that can be active at once. If you
do not specify a value for the maxconn switch, the maximum number of connections will
be equal to the number of IDL licenses you have available.

-port=N
Set this switch to the port number that the ION Daemon should watch for connection
requests. If you do not specify a value for the port switch, the ION Daemon watches port
7085.

-rutil
Set this switch to allow the utility routines iondown and ionstat to be run from any
host. By default, connections from these routines are allowed only if the routines are run
on the same host as the ION Daemon.

-timeout=seconds
Set this switch to the number of seconds ION will wait to receive a response. If no
response is received within the timeout interval, ION will make a second attempt (it will
“ping” the remote machine). If no response is received within the second timeout
interval, ION will close the connection.

The default timeout value is 60 seconds. You may wish to increase the timeout value with
extremely slow network connections.

-security=[none, widgets, linking, filein, fileout, fileio, os, device, df]
Set this switch to a comma-separated list of tokens that define a list of IDL routines. IDL
routines specified via a token in the security list will not be passed through to the IDL
session by the ION Server.

Note Do not include the brackets ([]) when specifying the security flag.

If you do not include the security flag when starting the ION Daemon, the following
default tokens are set:

widgets, fileio, os, linking, device, df
The ION Daemon ION Guide

Chapter 6: Configuring the ION Server 57
If you include the security flag when starting the ION Daemon, only the tokens you
specify are set. See the discussion of the infile, exfile, incomm, and excomm flags for
further information on specifying which IDL commands will be accepted by daemon.

The security switch accepts the following tokens, shown in bold. (In the lists below,
the asterisk is used to represent all IDL routines of a given type. For example, WIDGET_*
represents WIDGET_BASE, WIDGET_BUTTON, WIDGET_CONTROL, etc.)

none
No security checking is provided.

device
Disables changing devices using the SET_PLOT routine.

widgets
Disables the use of widgets, compound widgets, and widget-based IDL programs by
disallowing use of the following routines:

ANNOTATE, CW_*, DIALOG_*, EFONT, INSIGHT, MP_WIDGETS,
OS_PICKFILE, PICKFILE, PWIDGET, SLICER, SLIDE_IMAGE,
WEXMASTER, WIDED, WIDGET_*, XANIMATE, XBACKREGISTER,
XBM_EDIT, XDISPLAYFILE, XFONT, XINTERANIMATE, XLOADCT,
XMANAGER, XMANAGERTOOL, XMENU, XMNG_TMPL, XMTOOL, XNOTHING,
XPALETTE, XPDMENU, XREGISTERED, XSQ_TEST, XSURFACE, XVAREDIT

filein
Disables file input operations by disallowing use of the following routines:

GET_KBRD, OPENR, READ, READF, READU, READ_*, TAPRD

fileout
Disables file output operations by disallowing use of the following routines:

OPENW, PRINTF, TAPWRT, WEOF, WRITEU, WRITE_*

fileio
Disables file input and output operations by disallowing use of the following routines:

ASSOC, CLOSE, EOF, FILEPATH, FLUSH, FSTAT, GET_LUN, IOCTL,
OPENU, POINT_LUN, REWIND, SKIPF

linking
Disables calls from IDL to external code by disallowing use of the following routines:

CALL_EXTERNAL, LINKIMAGE

os
Disables operating system access by disallowing use of the following routines:

CD, CALL_FUNCTION, CALL_METHOD, CALL_PROCEDURE, DEFINE_KEY,
DELETE_SYMBOL, DELLOG, EXECUTE, FILEPATH, FINDFILE, GETENV,
ION Guide The ION Daemon

58 Chapter 6: Configuring the ION Server
GET_SYMBOL, POPD, PRINTD, PUSHD, SETENV, SETLOG, SET_SYMBOL,
SPAWN, TRNLOG

df
Disables all Scientific Data Format routines (CDF_*, HDF_*, NCDF_*).

The ION HTTP Tunnel Broker
Network firewalls work by isolating a network from the Internet as a whole and allowing
only pre-specified network operations to take place. In many cases, this means that traffic
between an internal network and the Internet must go through a single computer, which
allows connections of specified types and denies other connections. Firewalls allow
computers and data on the “inside” to be relatively safe from intrusion by outsiders, while
allowing the inside computers to make connections with computers on the Internet via a
set of relatively limited protocols, such as HTTP and FTP.

The ION client/server model is based on a persistent two-way socket connection between
the client and server. Firewalls, in most cases, do not allow arbitrary processes to open
socket connections to remote servers. Because ION communication is not based on any
standard protocol, it may not be able to penetrate a firewall that allows only the standard
proxy servers (HTTP, FTP), and other well-known protocols through.

ION Java applications running behind a firewall have little chance of obtaining a
connection through the firewall. However, ION applets running in a web browser can
take advantage of the HTTP connections provided by the browser and use them to
“tunnel” through the firewall and communicate with an external ION Server. The ION
HTTP Tunnel Broker provides all the functionality necessary for ION Applets to
successfully tunnel across most firewalls.

Note Because the Java vitual machines used by most web browsers use the SOCKS protocol
rather than HTTP proxies for HTTP connections, the ION Tunnel Broker may not
work through firewalls that do not support SOCKS.

The Tunnel Model
The ION Tunnel model includes an HTTP communications layer on the ION Client that
maintains a connection to an ION HTTP Tunnel Broker. The Broker manages a set of
peers that communicate with and control ION Servers. HTTP requests sent from the
client to the server are dispatched to the appropriate peer and peer responses are sent back
to the client through the Broker in the form of an HTTP response.

Normally, when an ION client makes a connection, the ION Daemon sets up a direct
socket connection between the client and an ION Server process.

In the Tunnel model, ION clients connect to the ION Tunnel Broker rather than to the
ION Daemon. The Tunnel Broker requests that the ION Daemon start an ION Server
process, and attaches a peer to the server. The peer then acts as the client for
communication with the ION Server. The peer buffers server responses, packs them into
HTTP messages, and sends them through the Tunnel Broker back to the ION client.
The ION HTTP Tunnel Broker ION Guide

Chapter 6: Configuring the ION Server 59
Using the Tunnel Broker
Using the ION Tunnel Broker is very simple. On the server side, you must ensure that the
ION Tunnel Broker is running; see “The ION Tunnel Broker Daemon” on page 59 for
details. On the client side, you have the option of specifying one of three connection types
via the CONNECTION_TYPE parameter in an ION applet:

• “HTTP_CON” — Make only HTTP connections, using the The ION HTTP Tunnel
Broker.

• “SOCK_CON” — Make only socket connections, using only the ION Daemon.

• “BEST_CON” — Attempt to make a socket connection. If a socket connection is not
possible, attempt to make an HTTP connection. This is the default setting.

Since “BEST_CON” is the default, you do not need to add the CONNECTION_TYPE
parameter at all if you want your ION Server to accept either socket or HTTP
connections. See “Parameters Specified via PARAM Tags” on page 14 for details on other
parameters related to the ION Tunnel Broker.

The ION Tunnel Broker Daemon
The ION Tunnel Broker Daemon must be running for ION to be able to use HTTP
connections. There are three ways to start the ION Tunnel Broker:

1. By specifying the -http flag to the iond command. With this method, both the ION
Daemon and the ION Tunnel Broker are started at the same time. You can also specify the
-httpport and -httplog flags to specify ION Tunnel Broker options. See “The ION
Daemon” on page 53 for details.

2. Using the ion_httpd command at the command line:

$ RSI_DIR/ionrelease/bin/ion_httpd [switches]

Command-line switches for the ion_httpd command are listed below.

3. On Windows NT systems, by using the ION Properties dialog, described in “ION
Windows NT Utilities” on page 62.

ion_httpd Command Line Switches
The ION Tunnel Broker Daemon accepts the following command-line options:

-ionhost=hostname
Set this switch equal to the name of the host on which the ION Daemon is running. Note
that the ION Tunnel Broker may be running on a different host than the ION Daemon
and ION Server. Note, however, that Java applet security requires that the Tunnel Broker
be run on the same machine that the ION Java classes were loaded from.

-ionport=N
Set this switch equal to the port number that the ION Daemon is listening to. Note that
the ION Tunnel Broker must be listening to a different port than the ION Daemon.
ION Guide The ION HTTP Tunnel Broker

60 Chapter 6: Configuring the ION Server
-port=N
Set this switch to the port number that the ION HTTP Tunnel Broker should watch for
connection requests. If you do not specify a value for the httpport switch, the ION
Tunnel Broker watches port 9085.

-logfile=filename [Windows NT only]
Set this switch to the name of the file in which you wish to save informational messages
from the ION Tunnel Broker. If no logfile is specified, messages will be written to the
standard output. (Under Unix, you can create a log file by redirecting the output from
ion_httpd to a log file of your choosing using the normal system output redirection
mechanism.)

-maxpeer=N
Set this switch to the maximum number of ION Tunnel Broker peers that can be active at
once. If N is 0 (zero, the default setting), maximum number of peers will be equal to the
number of IDL licenses you have available.

-timeout=N
Set this switch to the number of minutes the ION Tunnel Broker HTTP peer should stay
alive for without hearing from the client. A timeout is necessary to close Tunnel Broker
peer processes that may be left running if a browser crashes or experiences some other
error that disconnects the browser without shutting down the peer process. If N is 0 (zero)
the peer will never time out.

ION Command-Line Utilities
ION provides a set of utility programs that allow you to check the status of the ION
Daemon or HTTP Tunnel Broker, or to shut down the daemon. On Unix platforms, run
the utility programs from the shell prompt. On Windows NT platforms, you must open
a Command Prompt window to execute the programs from the command line. On
Windows platforms, you can also use a set of dialogs that accomplish the same operations
as the command-line versions; the dialogs are discussed in “ION Windows NT Utilities”
on page 62.

Checking the Status of the ION Daemon
Use the ionstat utility to determine the current status of the ION Daemon and Tunnel
Broker. The status report includes the start time of the daemon and information about
clients currently connected to the ION Server.

Under Windows NT, you must open a Command Prompt window to execute the
command. You can also use the ION Status dialog, described in “ION Windows NT
Utilities” on page 62.

$ ionstat [-host=hostname] [-port=port]

where:
ION Command-Line Utilities ION Guide

Chapter 6: Configuring the ION Server 61
-host=hostname
Set this flag to the name of the host on which the ION Daemon is running. Unless the
-rutil flag was set when the ION Daemon was started, ionstat requests are only
accepted from the host on which the daemon is running.

-port=port
Set this flag to the port number of the port that the ION Daemon is watching.

Shutting Down the ION Daemon
Use the iondown utility to shut down the ION Daemon and Tunnel Broker. Under
Windows NT, you must open a Command Prompt window to execute the command.

Note Under Windows NT, you will generally use the ION service rather than starting and
stopping the ION Daemon manually. However, if you use the iond command to start
the ION Daemon on your machine, you can use the iondown command to stop it.
There is no option in the ION Properties dialog to start and stop the ION Daemon
directly.

$ iondown [-force] [-host=hostname] [-port=port]

where:

-force
Set this flag to force the ION Daemon to shut down without prompting. If -force is not
specified, iondown will prompt you before shutting down the daemon.

-host=hostname
Set this flag to the name of the host on which the ION Daemon is running. Unless the
-rutil flag was set when the ION Daemon was started, iondown requests are only
accepted from the host on which the daemon is running.

-port=port
Set this flag to the port number of the port that the ION Daemon is watching.

Installing the ION Daemon Service under Windows NT
Use the ion_srvinst.exe program to install, control, and check the status of the ION
Daemon Windows NT service. If you chose to install the ION Daemon service during the
ION installation process, you do not need to install it again.

Note You can also use the ION Properties dialog, described in “ION Windows NT Utilities”
on page 62, to install and remove the ION Service.

To use ion_srvinst, open a Command Prompt window and enter:

c:\rsi\ion11\ion_srvinst [-install] [-remove]
[-start = auto|manual] [-iondir=iondir]

(assuming your ION installation is in c:\rsi\ion11), where:
ION Guide ION Command-Line Utilities

62 Chapter 6: Configuring the ION Server
-install
Set this flag to install the ION Daemon service into the system.

-remove
Set this flag to remove the ION Daemon service from the system.

-start=[auto|manual]
Set this flag to specify the start type of the service. If set to auto, the ION Daemon service
will be started by the Windows system at startup. If set to manual, the ION Daemon
service must be started through the Service Control Panel. See “Starting and Stopping the
ION Daemon Service Manually” on page 62 for details. The default is manual. Note that
this option is only valid when installing the ION Daemon service—the flag is ignored if
the -install switch is not also specified.

-iondir=[directory]
Use this flag to specify the ion installation directory. Setting this flag will override any
Windows registry entries and environment variable settings

If no flags are specified, ion_srvinst will print out the current status of the service.
This includes the following information:

• The “Start type” (manual or automatic).

• The full path specification for the executable the service is using (for example:
d:\rsi\ion11\ion_srv.exe).

• The account name the service runs under, if available.

Starting and Stopping the ION Daemon Service Manually
To start the ION Daemon service manually, do the following:

1. Open the Services Control Panel.

2. Select “ION Daemon” from the list and click “Start” or “Stop”.

3. To toggle the service between automatic and manual startup modes, click “Startup” and
select the desired startup mode from the dialog.

Note You can also use the ION Properties dialog, described in “ION Windows NT Utilities”
on page 62, to start and stop the ION Service.

Figure 6-1 shows the Windows NT Services control panel with the ION Daemon selected.

ION Windows NT Utilities
ION for Windows NT includes two dialog-based utilities that duplicate the functionality
of the command-line utilities discussed in “ION Command-Line Utilities” on page 60.
Shortcuts to both utilities — wionprop.exe and wionstat.exe — are installed in the
ION program group by the ION installation program. This section discusses the use of
the Windows ION utilities.
ION Windows NT Utilities ION Guide

Chapter 6: Configuring the ION Server 63
The wionprop.exe Utility
Start the wionprop.exe utility by selecting “ION Properties” from the ION program
group in the Windows Start menu. The utility presents a tabbed dialog that allows you to
control ION settings. After changing a setting in the dialog, you can click “OK” to accept
the change and close the dialog, “Apply” to accept the change but leave the dialog open,
or “Cancel” to close the dialog without making any changes.

The ION Properties dialog has the following tabs:

Control Tab
Click the “Remove”/“Install” button
to remove or install the ION Service
in the Windows service registry. If
you installed the ION service during
installation, you will probably not
need to remove or install the service
until a new version of ION is
released. This button performs the
same actions as the ion_srvinst
utility routine.

Click the “Start”/“Stop” button to
start or stop the ION service. This
button performs the same actions as
you would by manually starting and stopping the service using the Service Control Panel.

Set the value of the “ION Port Number” field to the port number the ION Service will
listen on. Set the value of the “ION Communication Timeout” to the number of seconds
ION will wait before closing a connection. Click the “Allow Remote Utility Connections”
checkbox to allow the ION utility programs to control the ION Server from computers
other than the one the server is running on. These three controls perform the same
actions as the -port, -timeout, and -rutil flags to the iond command.

Figure 6-1: The Windows NT Services control panel.
ION Guide ION Windows NT Utilities

64 Chapter 6: Configuring the ION Server
Locations Tab
Set the value of the “ION Directory”
field to the location of the ION
directory on your server machine. Set
the value of the “IDL Directory” field
to the location of IDL on your server
machine. Set the value of the “ION
Log File” field to the location of a text
file that will contain the ION Server
logs. These three fields perform the
same actions as the -iondir,
-idldir, and -logfile flags to the
iond command. Click “View” to
view the contents of the log file.

Security Tab
Set the value of the “Exclusion List”
field to a text file that contains a list of
commands ION should not execute.
Set the value of the “Inclusion List”
field to a text file that contains a list of
commands ION is allowed to
execute. Click the “Edit” button on
either field to edit the text file. (See
“Security Command Files” on page
53 for details.) Set the checkboxes in
the “Active Security Groups” field to
enable or disable entire classes of IDL
functionality. The security groups are
described in “Command Line
Parameters” on page 54.

Commands Tab
Click “Add” to add the name of an
IDL command to the list of
individual commands to be excluded
or allowed by the ION security
mechanism. Select a command from
either list and click “Remove” to
remove that command from the list.
(See “Security Command Files” on
page 53 for details.)
ION Windows NT Utilities ION Guide

Chapter 6: Configuring the ION Server 65
Broker Tab
Click the “Enable HTTP Broker”
checkbox to enable or disable the
ION Tunnel Broker. Set the value of
the “Broker Port Number” to the
port number the ION Tunnel Broker
will listen on. Set the value of the
“Maximum HTTP Connections”
field to the maximum number of
HTTP connections allowed at any
one time. Set the timeout value to the
number of minutes an ION peer
should wait before closing a
connection. Set the value of the
“Broker Log File” field to the location
of a text file that will contain the ION Tunnel Broker logs. These three fields perform the
same actions as the -port, -maxpeer, -timeout, and -logfile flags to the
ion_httpd command. Click “View” to view the contents of the log file.

The wionstat.exe Utility
Start the wionstat.exe utility by
selecting “ION Status” from the ION
program group in the Windows Start
menu. The ION Status dialog allows you to
obtain information about the current state
of an ION Daemon or ION Tunnel Broker.
Set the value of the “Host” field to the
name of the computer on which either the
ION Daemon or ION Tunnel Broker is
running. Set the “Port Number” field equal
to the port being watched by either the
ION Daemon or the ION Tunnel Broker.
Click “Query” to retrieve information on
the Daemon or Tunnel Broker running on
the specified host and port. Click “Clear”
to clear the display, or “OK” to dismiss the
dialog.

The ION Server Process
Once the incoming client has been verified by the ION Daemon, the ION Daemon starts
an ION Server process and connects the client with the ION Server process. The ION
Server process checks out an ION license and then begins command processing. The ION
Server process is responsible for the following:

• Reading requests from the ION client,
ION Guide The ION Server Process

66 Chapter 6: Configuring the ION Server
• Performing security checks on the client request,

• Executing valid ION/IDL commands,

• Sending graphic information and data to the ION client.

Security Checks
Once a command is received from the client, the request is passed through the ION
security system. Any security failure causes the command to be logged and an error
condition to be sent to the client. If the command passes the security system, it is passed
to IDL for execution.

Command Execution
When a command is executed, all graphic and command log information is sent to the
client. Once the command is completed the error status is sent to the client and the ION
Server process waits for the next request.

Configuration Details
Very little configuration of your system is necessary to run ION — ION simply needs to
know the locations of the ION directory and the associated IDL directory. Under Unix,
environment variables specifying these locations are set automatically when the ION
Daemon is started. Under Windows NT, the appropriate values are inserted in the
Windows registry during the ION installation process.

You can override the default location settings using command-line switches to the ION
Daemon (using either iond or ion_srvinst) described in “Command Line
Parameters” on page 54, or you can set environment variables to override the defaults.

Note Under Unix, only the location of the ION directory can be overridden.

When ION runs, it uses the following algorithm to determine the locations of the ION
and IDL directories:

1. If a command line switch was set, ION uses the value specified at the command line.

2. If the command-line switch is not set, ION will check the system environment for the
directory environment variable. If the environment variable is present, its value will be
used.

3. On a Windows NT system, if neither a command line switch or an environment variable
is present, ION checks the Windows registry for the directory locations.

Environment Variables
Set the following environment variables to alter the default locations for ION and IDL.

ION_DIR
Set this environment variable to the directory that contains the ION distribution
Configuration Details ION Guide

Chapter 6: Configuring the ION Server 67
IDL_DIR
Set this environment variable to the directory that contains the IDL distribution. Under
Unix, the setting of this environment variable is ignored and its value set explicitly when
the iond process starts.
ION Guide Configuration Details

68 Chapter 6: Configuring the ION Server
Configuration Details ION Guide

Chapter 7

ION Class and
Method Reference
The following topics are covered in this chapter:

How to Use this Chapter 70 IONGrDrawable 148
Alphabetical List of Classes 72 IONGrGraphic 155
IONCallableClient 79 IONGrPlot .. 160
IONCanvas ... 90 IONGrSurface 165
IONCommandDoneListener 94 IONMouseListener 171
IONComplex 96 IONOffScreen 175
IONContour 101 IONOutputListener 177
IONDComplex 107 IONPaletteFilter 178
IONDisconnectListener 112 IONPlot .. 181
IONDrawable 113 IONSurface 186
IONGraphicsClient 121 IONVariable 192
IONGrConnection 134 IONWindow 211
IONGrContour 142 IONWindowingClient 213
69

70 Chapter 7: ION Class and Method Reference
This chapter describes the ION Java class library. Conventions used in this chapter are
described below.

How to Use this Chapter
The elements of the ION Java class library are documented alphabetically in this chapter.
The page or pages describing each class include a description of the class declaration,
which provides pointers to the Java class (or other ION class) the class inherits from, if
any. Note that this chapter does not provide documentation for the Java classes
themselves; see your Java API reference materials for descriptions of the Java classes. Class
methods are documented alphabetically (with the exception of the constructor method
for the class, which is documented first) following the description of the class itself.

A description of each method follows its name. Beneath the general description of the
method are a number of sections that describe the calling sequence for the method and
its arguments (if any). These sections are described below.

Syntax
The “Syntax” section shows the proper syntax for calling the method.

Data Types
Java is a strongly-typed language, which means that input and output data variables must
be created as or cast to the proper type before use. The “Syntax” description include the
data type of each variable specified. For example, the following is a syntax description for
the ION method that sets the value of an IDL variable:

setIDLVariable(String sName, IONVariable oVar)

In this case, there are two arguments to the setIDLVariable method: sName and oVar.
The word “String” defines sName as a variable of type string. Similarly, the word
“IONVariable” defines oVar as a variable of type IONVariable.

Multiple Syntax Definitions
Many ION Java methods can be called in more than one way. In these cases, all of the
available syntax definitions are listed together. For example, the following are all valid
ways to call the setXValue method of the IONContour class:

setXValue(int X[])

setXValue(float X[])

setXValue(double X[])

setXValue(String sName)

This means that the argument to the setXValue method can be either an integer, single-
precision floating-point, or double-precision floating-point array, or a string value.
How to Use this Chapter ION Guide

Chapter 7: ION Class and Method Reference 71
Optional Arguments
Arguments that are not required are included in the syntax definition enclosed in square
brackets ([]). Do not confuse the use of square brackets to indicate that an argument is
an array with the brackets that specify an optional argument. For example, the square
brackets in this syntax definition indicate that the variable X is an array variable:

setXValue(int X[])

The square brackets in the following syntax definition indicate that the portNumber
argument is optional:

connect(String hostname [, int portNumber])

Arguments
The “Arguments” section describes each valid argument to the method. Note that these
arguments are positional parameters that must be supplied in the order indicated by the
method’s syntax.

Exceptions
The “Exceptions” section describes the ION exception values that are thrown when your
error-handling code detects an error.

Example
The “Example” section includes, where appropriate, a short example showing the
method in use.

Typographical Conventions
The following typographical conventions are used in this chapter:

• UPPER CASE
IDL functions, procedures, and keywords are displayed in UPPER CASE type. For exam-
ple, the calling sequence for an IDL procedure looks like this:

CONTOUR, Z [, X, Y]

• Mixed Case
ION object class and method names are displayed in Mixed Case type. Unlike IDL, the
Java language is case-sensitive; names of ION Java methods and classes must be entered
with the same capitalization as shown in this reference section.

• Italic type
Arguments to ION procedures and functions — data or variables you must provide —
are displayed in italic type.

• Square brackets ([])
Square brackets used in calling sequences indicate that the enclosed arguments are
optional. Do not type the brackets. In the above CONTOUR example, X and Y are optional
arguments. Square brackets are also used to specify array elements.
ION Guide How to Use this Chapter

72 Chapter 7: ION Class and Method Reference
• Courier type
Names of ION classes and methods are displayed in courier type. Syntax descriptions
are shown in courier bold and bold italic. Examples are shown in courier.

Alphabetical List of Classes
The following table lists the methods for each ION Java class.

Class Method

IONCallableClient

IONCallableClient()

addIONCommandDoneListener()

addIONDisconnectListener()

addIONOutputListener()

connect()

disconnect()

executeIDLCommand()

getIDLVariable()

removeIONCommandDoneListener()

removeIONDisconnectListener()

removeIONOutputListener()

sendIDLCommand()

setIDLVariable()

IONCanvas

IONCanvas()

addIONMouseListener()

getDownButtons()

getMousePos()

removeIONMouseListener()

IONCommandDoneListener

IONCommandComplete()

IONComplex

IONComplex()

doubleValue()

floatValue()
Alphabetical List of Classes ION Guide

Chapter 7: ION Class and Method Reference 73
getImaginary()

getDImaginary()

intValue()

longValue()

toString()

IONContour

IONContour()

draw()

getProperty()

setProperty()

setXValue()

setYValue()

setZValue()

IONDComplex

IONDComplex()

doubleValue()

floatValue()

getImaginary()

getDImaginary()

intValue()

longValue()

toString()

IONDisconnectListener

IONDisconnection()

IONDrawable

createImage()

flush()

getGraphics()

getImage()

getIndex()

getToolKit()

initDrawable()

Class Method
ION Guide Alphabetical List of Classes

74 Chapter 7: ION Class and Method Reference
isIndex()

nColors()

setIndex()

size()

IONGraphicsClient

IONGraphicsClient()

addIONDrawable()

connect()

copyArea()

drawImage()

drawLine()

drawPolygon()

drawText()

erase()

getCurrentIndex()

getFreeIndex()

getIONDrawableIndices()

getNumIndices()

readImage()

removeIONDrawable()

setDecomposed()

setIONDrawable()

IONGrConnection

IONGrConnection()

addDrawable()

connect()

debugMode()

disconnect()

executeIDLCommand()

getIDLVariable()

removeDrawable()

setDrawable()

Class Method
Alphabetical List of Classes ION Guide

Chapter 7: ION Class and Method Reference 75
setIDLVariable()

IONGrContour

IONGrContour()

draw()

getProperty()

setProperty()

setXValue()

setYValue()

setZValue()

IONGrDrawable

IONGrDrawable()

addGraphic()

draw()

executeIDLCommand()

getConnection()

isConnected()

removeGraphic()

resetMulti()

setMulti()

setNoErase()

IONGrGraphic

IONGrGraphic()

draw()

getProperty()

getPropertyString()

registerProperty()

setNoErase()

setProperty()

IONGrPlot

IONGrPlot()

draw()

getProperty()

Class Method
ION Guide Alphabetical List of Classes

76 Chapter 7: ION Class and Method Reference
setProperty()

setXValue()

setYValue()

IONGrSurface

IONGrSurface()

draw()

getProperty()

setProperty()

setXValue()

setYValue()

setZValue()

IONMouseListener

mouseMoved()

mousePressed()

mouseReleased()

IONOffScreen

IONOffScreen()

IONOutputListener

IONOutputText()

IONPaletteFilter

IONPaletteFilter()

getColor()

getIndexModel()

IONPlot

IONPlot()

draw()

getProperty()

setProperty()

setXValue()

setYValue()

IONSurface

IONSurface()

Class Method
Alphabetical List of Classes ION Guide

Chapter 7: ION Class and Method Reference 77
draw()

getProperty()

setProperty()

setXValue()

setYValue()

setZValue()

IONVariable

IONVariable()

arrayDimensions()

getByte()

getByteArray()

getComplexArray()

getDComplexArray()

getDImaginary()

getDouble()

getDoubleArray()

getFloat()

getFloatArray()

getImaginary()

getInt()

getIntArray()

getShort()

getShortArray()

getString()

getStringArray()

isArray()

toString()

type()

IONWindow

IONWindow()

setId()

setOwner()

Class Method
ION Guide Alphabetical List of Classes

78 Chapter 7: ION Class and Method Reference
IONWindowingClient

IONWindowingClient()

createPixmap()

createWindow()

deleteWindow()

iconizeWindow()

isPixmap()

isWindow()

showWindow()

Class Method
Alphabetical List of Classes ION Guide

Chapter 7: ION Class and Method Reference 79
IONCallableClient
The IONCallableClient class provides mechanisms to handle communication with the
server, execution of IDL commands, retrieval of IDL command log output, and getting
and setting IDL variables on the ION Server.

Class Declaration
public class IONCallableClient

Methods

• IONCallableClient()
Construct an object of the IONCallableClient class.

• addIONCommandDoneListener()
Add a “command done” listener to the client object.

• addIONDisconnectListener()
Add a “disconnect” listener to the client object.

• addIONOutputListener()
Add an “output” listener to the client object.

• connect()
Connect to the server.

• disconnect()
Shut down the ION Server and disconnect.

• executeIDLCommand()
Execute an IDL command on the ION Server.

• getIDLVariable()
Get the value of an IDL variable on the ION Server

• removeIONCommandDoneListener()
Remove a “command done” listener from the client object.

• removeIONDisconnectListener()
Remove a “disconnect” listener from the client object.

• removeIONOutputListener()
Remove a listener from the client object.

• setIDLVariable()
Set the value of an IDL variable on the ION Server.

• sendIDLCommand()
Post an IDL command to the ION Server.
ION Guide IONCallableClient

80 Chapter 7: ION Class and Method Reference
IONCallableClient()
The IONCallableClient() method constructs an IONCallableClient object. When it
returns, all internal initialization is complete. No connection is made at this time.

Syntax
IONCallableClient()

Arguments
None.

Example
IONCallableClient client = new IONCallableClient();

addIONCommandDoneListener()
The addIONCommandDoneListener() method is used to register an object that
implements the IONCommandDoneListener interface with this object. In order to
provide support for mouse operations (the IDL cursor procedure) the main thread that
handles the Java event loop must not block during IDL command execution. If the main
event thread blocked and the IDL server requested a mouse location, the client and the
server would be in a deadlock condition. To prevent a deadlock condition, this class
provides the sendIDLCommand() method which sends the command to the server for
execution and returns, not waiting for the command to complete. The class is informed
of the commands completion status through the IONCommandDoneListener interface.

Syntax
addIONCommandDoneListener(IONCommandDoneListener listener)

Arguments
listener
An object that implements the IONCommandDoneListener interface. The listener is
added to the internal listener list.

Exceptions
None.
IONCallableClient IONCallableClient() ION Guide

Chapter 7: ION Class and Method Reference 81
addIONDisconnectListener()
The addIONDisconnectListener() method adds an object that implements the
IONDisconnectListener interface to the internal list of registered listeners. When the
client/server connection is disconnected, callback methods are called on the objects that
are registered with the IONCallableClient.

Syntax
addIONDisconnectListener(IONDisconnectListener listener)

Arguments
listener
An object that implements the IONDisconnectListener interface. The listener is added to
the internal listener list.

Exceptions
None.

addIONOutputListener()
The addIONOutputListener() method is used to add an object that implements the
IONOutputListener interface to the internal list of listeners kept by this object. When any
IDL output is sent from the server to the client, the output is sent to the objects contained
in the listener list through the callback method defined by the IONOutputListener
interface. This provides an efficient method of passing IDL output to the client and
mimics the Java 1.1 event model.

Syntax
addIONOutputListener(IONOutputListener listener)

Arguments
listener
This is an object that implements the IONOuptutListener interface. This interface defines
the format of the callback method used to pass IDL output to the listener object. The
listener is added to the internal listener list.

Exceptions
None.
ION Guide IONCallableClient addIONDisconnectListener()

82 Chapter 7: ION Class and Method Reference
connect()
The connect() method establishes a connection between the client and the ION Server.
The client and the server make validity checks and the communication protocol is
established. If hostname and port information for both the ION Server and the ION
HTTP Tunnel Broker are supplied, the connection type is set automatically to
“BEST_CON”. See setConnectionType() on page 85 for details on setting other
connection types.

Syntax
connect(String hostname [, int portNumber])

connect(String hostname, int portNumber
String httphost, int httpport)

Arguments
hostname
The name of the host that the ION Server or HTTP broker is running on. If the class is
being created as part of a Java applet, most web browsers require that the host name be
the same host that the applet is being served from. If the connection type is either
“SOCK_CON” or “BEST_CON”, this argument specifies the host that the ION Server is
running on. If the connection type is “HTTP_CON” and the hhtphost argument is not
specified, this agrument specifies the host that the HTTP Tunnel Broker is running on.

portNumber
The port number to use when connecting to the ION Server. If this number is not
provided the default port number is used. If the connection type is either “SOCK_CON”
or “BEST_CON”, this argument specifies the port that the ION Server is running on. If
the connection type is “HTTP_CON” and the httpport argument is not specified, this
agrument specifies the port that the HTTP Tunnel Broker is running on.

httphost
The name of the host that the ION HTTP Tunnel Broker is running on. If all four
arguments to the connect method are supplied, the connection type is automatically set
to “BEST_CON”.

httpport
The port number to use when connecting to the ION HTTP Tunnel Broker. If all four
arguments to the connect method are supplied, the connection type is automatically set
to “BEST_CON”.

Exceptions
IOException
A network IO error detected
IONCallableClient connect() ION Guide

Chapter 7: ION Class and Method Reference 83
UnknownHostException
The given hostname is unknown

IONLicenseException
An ION license could not be obtained

disconnect()
Call the disconnect() method to shut down the ION Server (the daemon remains active),
close the connection between the server and the client and free any resources that were
being used by the connection. Once this method has been called, the object should be
considered invalid and not used.

Syntax
disconnect()

Arguments
None.

Exceptions
None.

executeIDLCommand()
Use the executeIDLCommand() method to send an IDL command to the ION Server for
execution. The function returns when the command is complete on the server.

Syntax
int iError = executeIDLCommand(String sCommand)

Return Value
The function returns the IDL system variable !ERROR
ION Guide IONCallableClient disconnect()

84 Chapter 7: ION Class and Method Reference
Arguments
sCommand
The IDL Command that is to be executed on the IDL server. The use of the “$” IDL
command (to open a shell or command window) and the line continuation character ($)
are prohibited (for security reasons, and because they can hang the server).

Exceptions
IOException
An error was detected during the IO operations used for communication.

IONIllegalCommandException
The specified IDL command was illegal (that is, it included the “$” character).

IONSecurityException
The specified IDL command is not allowed under the current ION security rules.

getConnectionType()
Use the getConnectionType() method to return the type of connection in use. See “The
ION HTTP Tunnel Broker” on page 58 for details on connection types.

Syntax
int type = getConnectionType()

Return Value
The function returns on of the following values:

HTTP_CON — The client uses the ION HTTP Tunnel Broker exclusively.

SOCK_CON — The client uses a normal ION socket connection exclusively.

BEST_CON — The client makes the best connection it can.

These values are defined as constants in the IONCallableClient class defintion. The
example below shows how to compare the returned value with the value defined in the
IONCallableClient class.

Arguments
None.
IONCallableClient getConnectionType() ION Guide

Chapter 7: ION Class and Method Reference 85
Exceptions
None.

Example
To determine whether the connection in use is a socket-only connection, use a statement
like the following:

if(getConnectionType() == IONCallableClient.SOCK_CON)

getIDLVariable()
Use the getIDLVariable() method to request the value of an IDL variable from the server.
The value of the variable is then returned as and IONVariable object. If the variable does
not exist on the server, it is created as an undefined type.

Syntax
IONVariable var = getIDLVariable(String sName)

Return Value
The function returns the value of the requested IDL variable in an IONVariable object.

Arguments
sName
The variable name whose value is desired.

Exceptions
IOException
An error was detected during the IO operations used for the client/server
communication.

setConnectionType()
Use the setConnectionType() method to set the type of connection for the client. See
“The ION HTTP Tunnel Broker” on page 58 for details on connection types.
ION Guide IONCallableClient getIDLVariable()

86 Chapter 7: ION Class and Method Reference
Syntax
setConnectionType(int Type)

Arguments
Type
Set the Type argument to one of the three following values:

HTTP_CON — The client uses the ION HTTP Tunnel Broker exclusively.

SOCK_CON — The client uses a normal ION socket connection exclusively.

BEST_CON — The client makes the best connection it can.

These values are defined as constants in the IONCallableClient class defintion.

Exceptions
None.

Example
To set the connection type to HTTP-only, use the following statement:

setConnectionType(IONCallableClient.HTTP_ONLY)

removeIONCommandDoneListener()
Use the removeIONCommandDoneListener() method to remove an object that
implements the IONCommandDoneListener interface from the list of listeners
maintained by this object. If the listener is not contained in the internal list of listeners,
the method returns silently.

Syntax
removeIONCommandDoneListener(IONCommandDoneListener
listener)

Arguments
listener
An object that implements the IONCommandDoneListener interface that is to be
removed from the internal listener list.
IONCallableClient removeIONCommandDoneListener() ION Guide

Chapter 7: ION Class and Method Reference 87
Exceptions
None.

removeIONDisconnectListener()
Use the removeIONDisconnectListener() method to remove an object that implements
the IONDisconnectListener interface from the internal Disconnect callback list. If the
listener is not contained in the internal list of listeners, the method returns silently.

Syntax
removeIONDisconnectListener(IONDisconnectListener listener)

Arguments
listener
The object that implements an IONDisconnectListener interface that should be removed
from the listener callback list.

Exceptions
None.

removeIONOutputListener()
Use the removeIONOutputListener() method to remove the given listener from the
internal list of listeners. If the listener is not contained in the internal list of listeners, the
method returns silently.

Syntax
removeIONOutputListener(IONOutputListener listener)

Arguments
listener
The object that implements an IONOutputListener interface that should be removed
from the listener callback list.
ION Guide IONCallableClient removeIONDisconnectListener()

88 Chapter 7: ION Class and Method Reference
Exceptions
None.

sendIDLCommand()
Use the sendIDLCommand() method to send an IDL command to the ION Server for
execution. The IDL command is posted to the server for execution and the function
returns. Notification of the commands completion is performed via the
IONCommandDoneListener interface.

Syntax
sendIDLCommand(String sCommand)

Arguments
sCommand
The IDL Command that is to be executed on the IDL server. The use of the “$” IDL
command (to open a shell or command window) and the line continuation character ($)
are prohibited (for security reasons, and because they can hang the server).

Exceptions
IOException
An error was detected during the IO operations used for communication.

setIDLVariable()
Use the setIDLVariable() method to set the value of a variable in the ION Server. If the
variable doesn't exist, it is created.

Syntax
setIDLVariable(String sName, IONVariable oVar)

Arguments
sName
The name of the variable to set on the server.
IONCallableClient sendIDLCommand() ION Guide

Chapter 7: ION Class and Method Reference 89
oVar
An object of type IONVariable that contains the value of the variable

Exceptions
IOException
An error was detected during the IO operations used for communication.
ION Guide IONCallableClient setIDLVariable()

90 Chapter 7: ION Class and Method Reference
IONCanvas
Objects of the IONCanvas class represent a visible drawing area in which graphic output
can be drawn.

Class Declaration
public class IONCanvas extends Canvas implements IONDrawable

Methods

• IONCanvas()
Construct an object of the IONCanvas class.

• addIONMouseListener()
Add a MouseListener object to the current canvas object.

• getDownButtons()
Report position of the mouse cursor on the canvas object.

• getMousePos()
Report mouse button status.

• removeIONMouseListener()
Remove a MouseListener object from the current canvas object.

See also the descriptions of the IONDrawable interface class and the Java Canvas Class

IONCanvas()
The IONCanvas() method constructs an IONCanvas object of the given size. This object
can then be placed in a Java AWT tree.

Syntax
IONCanvas(int width, int height)

Arguments
width
 The width of the canvas.

height
 The height of the canvas.
IONCanvas IONCanvas() ION Guide

Chapter 7: ION Class and Method Reference 91
Exceptions
None.

addIONMouseListener()
Use the addIONMouseListener() method to set the object that implements the
IONMouseListener interface as the current Mouse listener. When a mouse event of the
requested type is detected, the mouse listener interface callback function is called. Only
one mouse listener is active at one time. Note that only one mouse listener is allowed at a
time. Any previously-set mouse listener is removed.

Syntax
addIONMouseListener(IONMouseListener listener, int request)

Arguments
listener
Object that implements the mouse listener interface request.

int
 The mouse event type that is requested. This integer is a bit file that contains one or more
of the ION_MOUSE_* codes that are define in the IONMouseListener interface.

Exceptions
None.

getMousePos()
The getMousePos() method returns the current location of the mouse cursor in the
canvas.

Syntax
getMousePos()

Arguments
None.
ION Guide IONCanvas addIONMouseListener()

92 Chapter 7: ION Class and Method Reference
Exceptions
None.

Example
Point pt = getMousePos();

getDownButtons()
The getDownButtons() method returns the current state of the mouse buttons in the
canvas. The return value is a bit field where bit 1 is mouse button 1, bit 2 is mouse button
2 and bit three is mouse button 3. If a bit is set, the specific mouse button is down.

Syntax
getDownButtons()

Arguments
None.

Exceptions
None.

Example
int iState = getDownButtons();

removeIONMouseListener()
Use the removeIONMouseListener() method to remove a mouse listener from the object.
If the given mouse listener is not the current listener, the function exits quietly.

Syntax
removeIONMouseListener(IONMouseListener listener)
IONCanvas getDownButtons() ION Guide

Chapter 7: ION Class and Method Reference 93
Arguments
listener
 The listener to remove.

Exceptions
None.

 Example
removeIONMouseListener(listener);
ION Guide IONCanvas removeIONMouseListener()

94 Chapter 7: ION Class and Method Reference
IONCommandDoneListener
The IONCommandDoneListener interface class defines the method that an object must
implement to receive notification that an IDL command has completed.

Class Declaration
public interface IONCommandDoneListener

Methods

• IONCommandComplete()
Report on the status of a completed command.

IONCommandComplete()
Call the IONCommandComplete() method when a command that was sent to the IDL
server is complete.

Syntax
public void IONCommandComplete(int iStatus, int iIDLStatus)

Arguments
iStatus
A value that indicates the status of the processing of the IDL command. This value is one
of the following constants that are part of this class:

• ION_COMM_OK Command is OK

• ION_COMM_SECURITY Command security error.

• ION_COMM_INVALID Command was invalid

iIDLStatus
A value that indicates the success or failure of the execution of the IDL command. This is
the value of !ERROR in the IDL session.

Exceptions
None.
IONCommandDoneListener IONCommandComplete() ION Guide

Chapter 7: ION Class and Method Reference 95
Example
public void IONCommandComplete(iStatus, iIDLStatus);
ION Guide IONCommandDoneListener IONCommandComplete()

96 Chapter 7: ION Class and Method Reference
IONComplex
The IONComplex class represents a complex number.

Class Declaration
public class IONComplex extends Number

Methods

• IONComplex()
Construct an object of the IONComplex class.

• doubleValue()
Returns the double value of the real portion of the number

• floatValue()
Returns the float value of the number

• getImaginary()
Returns the imaginary value of the number

• getDImaginary()
Returns the imaginary value as a double.

• intValue()
Returns the int value of the real portion of the number.

• longValue()
Returns the long value of the real portion of the number.

• toString()
Returns the string value of the real portion of the number.

IONComplex()
Use the IONComplex() method to construct an object of the IONComplex class.

Syntax
IONComplex(float r, float i)

Arguments
r
The real portion of the number.
IONComplex IONComplex() ION Guide

Chapter 7: ION Class and Method Reference 97
i
The imaginary portion of the number.

Exceptions
None.

Example
IONComplex complexvar = new IONComplex(3.0, 2.0);

doubleValue()
The doubleValue() method returns the real portion of the complex number as a double-
precision floating-point value.

Syntax
doubleValue()

Arguments
None.

Exceptions
None.

Example
double d = complexvar.doubleValue();

floatValue()
The floatValue() method returns the real portion of the complex number as a single-
precision floating-point value.

Syntax
floatValue()
ION Guide IONComplex doubleValue()

98 Chapter 7: ION Class and Method Reference
Arguments
None.

Exceptions
None.

Example
float f = complexvar.floatValue();

getImaginary()
The getImaginary() method returns the imaginary portion of the complex number as a
single-precision floating-point value.

Syntax
getImaginary()

Arguments
None.

Exceptions
None.

Example
float i = complexvar.getImaginary();

getDImaginary()
The getDImaginary() method returns the imaginary portion of the complex number as
a double-precision floating-point value.

Syntax
getDImaginary()
IONComplex getImaginary() ION Guide

Chapter 7: ION Class and Method Reference 99
Arguments
None.

Exceptions
None.

Example
double d = complexvar.getDImaginary();

intValue()
The intValue() method returns the real portion of the complex number as an integer
value.

Syntax
intValue()

Arguments
None.

Exceptions
None.

Example
int i = complexvar.intValue();

longValue()
The longValue() method returns the real portion of the complex number as a long-
integer value.

Syntax
longValue()
ION Guide IONComplex intValue()

100 Chapter 7: ION Class and Method Reference
Arguments
None.

Exceptions
None.

Example
long l = complexvar.longValue();

toString()
The toString() method returns the real portion of the complex number as a string value.

Syntax
toString()

Arguments
None.

Exceptions
None.

Example
String s = complexvar.toString();
IONComplex toString() ION Guide

Chapter 7: ION Class and Method Reference 101
IONContour
The IONContour class extends the IONGrDrawable class and contains an
IONGrContour object to provide a easy way of drawing IDL contours. It can be inserted
into an AWT tree.

Class Declaration
public class IONContour extends IONGrDrawable

Methods

• IONContour()
Construct an object of the IONContour class.

• draw()
Produces the output graphic and displays the graphic on the drawing surface of this class.

• getProperty()
Used to get the value of a property.

• setProperty()
Used to set a property for the graphic.

• setXValue()
Sets the X value of the contour.

• setYValue()
Sets the Y value of the contour.

• setZValue()
Sets the Z data of the contour.

IONContour()
The IONContour() method constructs an object of the IONContour class.

Syntax
IONContour(int iWidth, int iHeight)

IONContour(int iWidth, int iHeight, int Z[][])

IONContour(int iWidth, int iHeight, float Z[][])

IONContour(int iWidth, int iHeight, double Z[][])
ION Guide IONContour IONContour()

102 Chapter 7: ION Class and Method Reference
IONContour(int iWidth, int iHeight, int Z[])

IONContour(int iWidth, int iHeight, float Z[])

IONContour(int iWidth, int iHeight, double Z[])

IONContour(int iWidth, int iHeight, String sName)

IONContour(int iWidth, int iHeight, int Z[][], int X[],
int Y[])

IONContour(int iWidth, int iHeight, float Z[][], float X[],
float Y[])

IONContour(int iWidth, int iHeight, double Z[][],
double X[], double Y[])

IONContour(int iWidth, int iHeight, String sZName,
String sXName, String sYName)

Arguments
iWidth
The width of the plot in pixels.

iHeight
The height of the plot in pixels.

Z
The Z values (data) to use in the contour.

sName, sZName
The name of the IDL variable to use for the Z (data) values of the contour.

X
An array holding the values for the X coordinates of the grid.

Y
An array holding the values for the Y coordinates of the grid.

sXName
The name of the IDL variable holding the values for the X coordinates of the grid.

sYName
The name of the IDL variable holding the values for the Y coordinates of the grid.

Exceptions
None.
IONContour IONContour() ION Guide

Chapter 7: ION Class and Method Reference 103
draw()
Use the draw() method to produce and display a graphic in the drawing area that makes
up this object.

Syntax
draw()

Arguments
None.

Exceptions
None.

getProperty()
Use the getProperty() method to get the current value of a property.

Syntax
getProperty(String Property)

Argument
Property
The name of the property

Properties Supported
The following IDL Contour properties are supported by IONContour.[get,set]Property.
Refer to the IDL documentation on keywords available for use with the CONTOUR
procedure for an explanation of each property:

C_ANNOTATION, C_CHARSIZE, C_COLORS, C_LABELS, C_LINESTYLE,
C_ORIENTATION, C_SPACING, CLOSED, DOWNHILL, FILL, CELL_FILL, FOLLOW,
IRREGULAR, LEVELS, NLEVELS, OVERPLOT, BACKGROUND, CHARSIZE, CLIP,
COLOR, DATA, DEVICE, FONT, LINESTYLE, NOCLIP, NODATA, NOERASE,
NORMAL, POSITION, SUBTITLE, T3D, TICKLEN, TITLE, MAX_VALUE,
MIN_VALUE, NSUM, POLAR, XLOG, YNOZERO, YLOG, XCHARSIZE, YCHARSIZE,
ZCHARSIZE, XGRIDSTYLE, YGRIDSTYLE, ZGRIDSTYLE, XMARGIN, YMARGIN,
ZMARGIN, XMINOR, YMINOR, ZMINOR, XRANGE, YRANGE, ZRANGE, XSTYLE,
YSTYLE, ZSTYLE, XTICKFORMAT, YTICKFORMAT, ZTICKFORMAT, XTICKLEN,
ION Guide IONContour draw()

104 Chapter 7: ION Class and Method Reference
YTICKLEN, ZTICKLEN, XTICKNAME, YTICKNAME, ZTICKNAME, XTICKS,
YTICKS, ZTICKS, XTICKV, YTICKV, ZTICKV, XTITLE, YTITLE, ZTITLE, ZVALUE,
ZAXIS

Exceptions
None.

Example
IONVariable value = getProperty(Property);

setProperty()
Use the setProperty() method to set a property for the contour object.

Syntax
setProperty(String Property, IONVariable Value)

Arguments
Property
The name of the property to set.

Value
The value of the property.

Properties Supported
The following IDL Contour properties are supported by IONContour.[get,set]Property.
Refer to the IDL documentation on keywords available for use with the CONTOUR
procedure for an explanation of each property:

C_ANNOTATION, C_CHARSIZE, C_COLORS, C_LABELS, C_LINESTYLE,
C_ORIENTATION, C_SPACING, CLOSED, DOWNHILL, FILL, CELL_FILL, FOLLOW,
IRREGULAR, LEVELS, NLEVELS, OVERPLOT, BACKGROUND, CHARSIZE, CLIP,
COLOR, DATA, DEVICE, FONT, LINESTYLE, NOCLIP, NODATA, NOERASE,
NORMAL, POSITION, SUBTITLE, T3D, TICKLEN, TITLE, MAX_VALUE,
MIN_VALUE, NSUM, POLAR, XLOG, YNOZERO, YLOG, XCHARSIZE, YCHARSIZE,
ZCHARSIZE, XGRIDSTYLE, YGRIDSTYLE, ZGRIDSTYLE, XMARGIN, YMARGIN,
ZMARGIN, XMINOR, YMINOR, ZMINOR, XRANGE, YRANGE, ZRANGE, XSTYLE,
YSTYLE, ZSTYLE, XTICKFORMAT, YTICKFORMAT, ZTICKFORMAT, XTICKLEN,
YTICKLEN, ZTICKLEN, XTICKNAME, YTICKNAME, ZTICKNAME, XTICKS,
IONContour setProperty() ION Guide

Chapter 7: ION Class and Method Reference 105
YTICKS, ZTICKS, XTICKV, YTICKV, ZTICKV, XTITLE, YTITLE, ZTITLE, ZVALUE,
ZAXIS

Exceptions
None.

setXValue()
Use the setXValue() method to reset the X value of the contour.

Syntax
setXValue(int X[])

setXValue(float X[])

setXValue(double X[])

setXValue(String sName)

Arguments
X
The new X value of the contour.

sName
The name of the IDL variable that contains the new X value of the contour

Exceptions
None.

setYValue()
Use the setYValue() method to reset the Y value of the contour.

Syntax
setYValue(int Y[])

setYValue(float Y[])

setYValue(double Y[])
ION Guide IONContour setXValue()

106 Chapter 7: ION Class and Method Reference
setYValue(String sName)

Arguments
Y
The new Y value of the contour

sName
The name of the IDL variable that contains the new Y value of the contour.

Exceptions
None.

setZValue()
Use the setZValue() method to reset the Z value of the contour.

Syntax
setZValue(int Z[])

setZValue(float Z[])

setZValue(double Z[])

setZValue(int Z[][])

setZValue(float Z[][])

setZValue(double Z[][])

setZValue(String sName)

Argument
Z
The new Z value of the contour

sName
The name of the IDL variable that contains the new Z value of the contour.

Exceptions
None.
IONContour setZValue() ION Guide

Chapter 7: ION Class and Method Reference 107
IONDComplex
The IONDComplex class represents a double-precision complex number.

Class Declaration
public classs IONComplex extends Number

Methods

• IONDComplex()
Construct an object of the IONComplex class.

• doubleValue()
Returns the double value of the real portion of the number

• floatValue()
Returns the float value of the number

• getImaginary()
Returns the imaginary value of the number

• getDImaginary()
Returns the imaginary value as a double.

• intValue()
Returns the int value of the real portion of the number.

• longValue()
Returns the long value of the real portion of the number.

• toString()
Returns the string value of the real portion of the number.

IONDComplex()
The IONDComplex() method constructs an object of the IONDComplex class.

Syntax
IONDComplex(double r, double i)

Arguments
r
The real portion of the number.
ION Guide IONDComplex IONDComplex()

108 Chapter 7: ION Class and Method Reference
i
The imaginary portion of the number.

Exceptions
None.

Example
IONDComplex dcomplexvar = new IONDComplex(3.0, 2.0);

doubleValue()
The doubleValue() method returns the real portion of the complex number as a double-
precision floating-point value.

Syntax
doubleValue()

Arguments
None.

Exceptions
None.

Example
double d = dcomplexvar.doubleValue();

floatValue()
The floatValue() method returns the real portion of the complex number as a single-
precision floating-point value.

Syntax
floatValue()
IONDComplex doubleValue() ION Guide

Chapter 7: ION Class and Method Reference 109
Arguments
None.

Exceptions
None.

Example
float f = dcomplexvar.floatValue();

getImaginary()
The getImaginary() method returns the imaginary portion of the complex number as a
single-precision floating-point value.

Syntax
getImaginary()

Arguments
None.

Exceptions
None.

Example
float i = dcomplexvar.getImaginary();

getDImaginary()
The getDImaginary() method returns the imaginary portion of the complex number as
a double-precision floating-point value.

Syntax
getDImaginary()
ION Guide IONDComplex getImaginary()

110 Chapter 7: ION Class and Method Reference
Arguments
None.

Exceptions
None.

Example
double d = dcomplexvar.getDImaginary();

intValue()
The intValue() method returns the real portion of the complex number as an integer
value.

Syntax
intValue()

Arguments
None.

Exceptions
None.

Example
int i = dcomplexvar.intValue();

longValue()
The longValue() method returns the real portion of the complex number as a long-
integer value.

Syntax
longValue()
IONDComplex intValue() ION Guide

Chapter 7: ION Class and Method Reference 111
Arguments
None.

Exceptions
None.

Example
long l = dcomplexvar.longValue();

toString()
The toString() method returns the real portion of the complex number as a string value.

Syntax
toString()

Arguments
None.

Exceptions
None.

Example
String s = dcomplexvar.toString();
ION Guide IONDComplex toString()

112 Chapter 7: ION Class and Method Reference
IONDisconnectListener
The IONDisconnectListener interface class defines a method that is called when the
connection between the client and the server is disconnected. The reason for
disconnection is defined by one of the constants that are a part of this interface.

Class Declaration
public interface IONDisconnectListener

Methods

• IONDisconnection()
Report status when client and server are disconnected.

IONDisconnection()
The IONDisconnection() method is called when the connection between the client and
the server is broken to report the reason for disconnection.

Syntax
IONDisconnection(int iStatus)

Arguments
iStatus
A constant (defined in the ION interface) corresponding to the reason for the
disconnection. These constants are:

Exceptions
None.

ION_DIS_OK Normal disconnection due to disconnect()
method being called.

ION_DIS_ERR Disconnection caused by an error. Nor-
mally due to an interruption in the com-
munication channel.

ION_DIS_SERVER Disconnection due to server shutdown.
IONDisconnectListener IONDisconnection() ION Guide

Chapter 7: ION Class and Method Reference 113
IONDrawable
The IONDrawable interface class defines the methods that an object must implement to
act as an ION drawable object. An IONDrawable is an object that can be drawn to by an
IONGraphicsClient.

Class Declaration
public interface IONDrawable

Methods

• createImage()
Used to create an offscreen image.

• flush()
Forces all graphics operations to be displayed.

• getGraphics()
Returns a Java graphics context for the device.

• getImage()
Returns the image that is being drawn to.

• getIndex()
Returns the IDL window index of the device

• getIONGraphics()
Returns an ION graphics context for the device.

• getToolKit()
Returns the Toolkit object for the system.

• initDrawable()
A post-creation routine. This routine is called after the device has be created. This is needed
because some graphics operations (creation of offscreen buffers) cannot be preformed in
a constructor.

• isIndex()
Returns true if the drawable is indexed color.

• nColors()
Returns the number of colors in the device

• setIndex()
Method used to set the IDL Window index in the device.

• size()
Returns the size of the drawing area.
ION Guide IONDrawable IONDisconnection()

114 Chapter 7: ION Class and Method Reference
createImage()
Use the createImage() method to create an image from the given producer or of a given
size.

Syntax
createImage(ImageProducer imProducer)

createImage(int width, int height)

Arguments
imProducer
Image producer that will create the image.

width
The width of the requested image.

height
The height of the requested image.

Exceptions
None.

Example
Image im = draw.createImage(imProducer);

Image im = draw.createImage(300, 300);

flush()
Use the flush() method to force all graphics operations to be displayed.

Syntax
flush()

Arguments
None.
IONDrawable createImage() ION Guide

Chapter 7: ION Class and Method Reference 115
Exceptions
None.

Example
draw.flush();

getGraphics()
Use the getGraphics() method to return a Graphics object that can be used to get graphics
info on the Java drawing area or draw directly to it. Graphics in the Java drawing area are
not accessible by IDL — use the getIONGraphics() method to get information or draw
directly to a drawing buffer that is accessible by IDL.

Syntax
getGraphics()

Arguments
None.

Exceptions
None.

Example
Graphics g = draw.getGraphics();

getImage()
The getImage() method returns the image that contains the current state of the drawing
area.

Syntax
getImage()

Arguments
None.
ION Guide IONDrawable getGraphics()

116 Chapter 7: ION Class and Method Reference
Exceptions
None.

Example
Image im = draw.getImage();

getIndex()
Use the getIndex() method to get the IDL Window index of the drawable. If no index has
been set in the drawable, the getIndex() returns window index -1.

Syntax
getIndex()

Arguments
None.

Exceptions
None.

Example
int iIndex = draw.getIndex();

getIONGraphics()
Use the getIONGraphics() method to return a Graphics object that can be used to get
graphics info on ION’s drawing buffer or draw directly to it. Unlike the getGraphics()
method, getIONGraphics() allows you to affect the actual IDL drawable area. For
example, you would use the getIONGraphics() method when manipulating the buffer
using the COPY keyword to IDL’s DEVICE procedure.

Syntax
getIONGraphics()
IONDrawable getIndex() ION Guide

Chapter 7: ION Class and Method Reference 117
Arguments
None.

Exceptions
None.

Example
Graphics g = draw.getIONGraphics();

getToolKit()
The getToolKit() method returns the toolkit for the system.

Syntax
getToolKit()

Arguments
None.

Exceptions
None.

Example
Toolkit tk = draw.getToolKit();

initDrawable()
Use the initDrawable() method to perform device initialization (such as the creation of
off-screen images) that cannot be performed in the constructor method. initDrawable()
is called after IONDrawable() has been called.

Syntax
initDrawable()
ION Guide IONDrawable getToolKit()

118 Chapter 7: ION Class and Method Reference
Arguments
None.

Exceptions
None.

Example
draw.initDrawable();

isIndex()
Use the isIndex() method to determine if the drawing area is an indexed color destination
or not.

Syntax
inIndex()

Arguments
None.

Exceptions
None.

Example
boolean b = draw.isIndex();

nColors()
The nColors() method returns the number of colors available on the device.

Syntax
nColors()
IONDrawable isIndex() ION Guide

Chapter 7: ION Class and Method Reference 119
Arguments
None.

Exceptions
None.

Example
int colors = draw.nColors();

setIndex()
The setIndex() method is used by the ION system to assign IDL drawable indices. Calling
this method directly may cause the lists of drawable indices maintained by the server and
client to become unsynchronized.

Syntax
setIndex(int iIndex)

Arguments
iIndex
The IDL window index for the object.

Exceptions
None.

Example
draw.setIndex(1);

size()
The size() method returns the size of the drawing area.

Syntax
size()
ION Guide IONDrawable setIndex()

120 Chapter 7: ION Class and Method Reference
Arguments
None.

Exceptions
None.

Example
Dimension dim = draw.size();
IONDrawable size() ION Guide

Chapter 7: ION Class and Method Reference 121
IONGraphicsClient
The IONGraphicsClient class provides mechanisms to handle the processing of a graphic
primitive data set from the IDL server. Information sent by the server is read by
mechanisms provided by the super class IONCallableClient and dispatched to the
handleServerAction() method of this class (this class overrides the handleServerAction()
method).

Class Declaration
public class IONGraphicsClient extends IONCallableClient

implements IONMouseListener

Methods

• IONGraphicsClient()
Construct and object of the IONGraphicsClient class.

• addIONDrawable()
Used to add an object that implements the IONDrawable interface (windows or off-screen
images).

• connect()
connects the client with the ION Server.

• copyArea()
Copy an area from one drawable to another.

• drawImage()
Draws an image on the current drawable

• drawLine()
Draws a line on the current drawable

• drawPolygon()
Draws a filled polygon on the current drawable

• drawText()
Draws text on the current drawable.

• erase()
erases the current drawable

• getCurrentIndex()
Get the index of the current drawable.

• getFreeIndex()
Get a free drawable index.
ION Guide IONGraphicsClient size()

122 Chapter 7: ION Class and Method Reference
• getIONDrawableIndices()
Get a list of assigned drawable indices.

• getNumIndices()
Get the number of drawable indices allocated.

• readImage()
Reads the current contents of the drawable

• removeIONDrawable()
Used to remove an object from the internal list of IONDrawables maintained by this
object.

• setDecomposed()
Set decomposed mode on the connection.

• setIONDrawable()
Set the current drawable.

IONGraphicsClient()
The IONGraphicsClient() method constructs an object of the IONGraphicsClient class.

Syntax
IONGraphicsClient()

Arguments
None.

Exceptions
None.

Example
IONGraphicsClient iclient = new IONGraphicsClient();

addIONDrawable()
Use the addIONDrawable() method to add an object that implements the IONDrawable
interface to the internal list of drawing areas maintained by this object. An IONDrawable
represents an area that graphic primitives can be rendered onto. When the window is
IONGraphicsClient IONGraphicsClient() ION Guide

Chapter 7: ION Class and Method Reference 123
added to this class, that drawing area is made the current drawing area being used for
graphical output. The developer has the option of telling ION what index to use and also
requesting that the method send information about the new drawable to the server. The
function returns the window index number that is used by IDL to reference the drawing
area.

Syntax
addIONDrawable(IONDrawable drawable)

addIONDrawable(IONDrawable drawable, int index)

Arguments
drawable
An object that implements the IONDrawable interface.

index
The index to assign to the drawable. If no index is supplied, a free index is used.

Return Value
The function returns the window index number that is used by IDL to referance the
drawable.

Exceptions
None.

Example
int iIndex = addIONDrawable(drawable);

int iIndex = addIONDrawable(drawable, index);

connect()
Use the connect() method to establish a connection between the client and the IDL server.
The client and the server make validity checks and the communication protocol is
established.

Syntax
connect(String hostname [, int portnumber])
ION Guide IONGraphicsClient connect()

124 Chapter 7: ION Class and Method Reference
Arguments
hostname
The name of the host that the ION Server is running on. If the class is being created as
part of a Java applet, most web browsers require that the host name be the same host that
the applet is being served from.

portNumber
The port number to use when connecting to the IDL server. If this number is not
provided the default port number is used.

Exceptions
IOException
A network IO error detected

UnknownHostException
The given hostname is unknown

IONLicenseException
An IDL license could not be obtained

copyArea()
Use the copyArea() method to copy an area from one drawable to another.

Syntax
copyArea(int iSource, int iDest, int iXSrc, int iYSrc,

int iWidth, int iHeight, int iXDest, int iYDest)

Arguments
iSource
The index of the source drawable.

iDest
The index of the destination drawable.

iXSrc, iYSrc
The lower left corner of the area to copy

iWidth, iHeight
The dimensions of the copy area
IONGraphicsClient copyArea() ION Guide

Chapter 7: ION Class and Method Reference 125
iXDest, iYDest
The location of the lower left corner of the copy area in the destination.

Exceptions
None.

drawImage()
Use the drawImage() method to draw an image on the current drawable.

Syntax
drawImage(byte bImage[], int iWidth, int iHeight,

int iXoffset, int iYoffset)

drawImage(int iImage[], int iWidth, int iHeight,
int iXoffset, int iYoffset)

drawImage(Image im, int iWidth, int iHeight,
int iXoffset, int iYoffset)

Arguments
bImage
A byte array that contains an indexed color image.

iImage
An int array that contains an RGB image

im
A Java AWT Image

iWidth
The width of the image to draw

iHeight
The height of the image to draw

iXoffset
The X offset

iYoffset
The Y offset
ION Guide IONGraphicsClient drawImage()

126 Chapter 7: ION Class and Method Reference
Exceptions
None.

drawLine()
Use the drawLine() method to draw a line on the current drawable.

Syntax
drawLine(int iX[], int iY[], int nVerts, int iColor, int
iLinestyle)

Arguments
iX[]
Array of the X locations that make up the line

iY[]
Array of the Y locations that make up the line

nVerts
The number of vertices to draw.

iColor
The color to draw the line in.

iLinestyle
The IDL linestyle to use.

Exceptions
None.

drawPolygon()
Use the drawPolygon() method to draw a filled polygon on the current drawable.

Syntax
drawPolygon(int iX[], int iY[], int nVerts, int iColor)
IONGraphicsClient drawLine() ION Guide

Chapter 7: ION Class and Method Reference 127
Arguments
iX[]
The X points of the polygon

iY[]
The Y points of the polygon

nVerts
The number of vertices that make up the polygon.

iColor
The color to fill the polygon with.

Exceptions
None.

drawText()
Use the drawText() method to draw the given text using the provided font on the current
drawable.

Syntax
drawText(String sText, int iX, int iY, int iColor,

Font font)

Arguments
sText
The text to draw

iX
The x location of the text

iY
The y location of the text

iColor
The color to draw the text with.

font
The font to use for the text.
ION Guide IONGraphicsClient drawText()

128 Chapter 7: ION Class and Method Reference
Exceptions
None.

erase()
Use the erase() method to erase the current drawable to the specified color.

Syntax
erase(int iColor)

Arguments
iColor
The color to erase the drawable to.

Exceptions
None.

getCurrentIndex()
Use the getCurrentIndex() method to get the index of the current drawable.

Syntax
getCurrentIndex()

Return Value
The current drawable index. If no drawable is current, -1 is returned.

Arguments
None.

Exceptions
None.
IONGraphicsClient erase() ION Guide

Chapter 7: ION Class and Method Reference 129
Example
int index = getCurrentIndex();

getFreeIndex()
The getFreeIndex() method returns the next available free drawable index greater than or
equal to 32.

Syntax
int index = getFreeIndex()

Return Value
The next available index.

Arguments
None.

Exceptions
None.

Example
int index = getFreeIndex();

getIONDrawableIndices()
Use the getIONDrawableIndices() method to fill an array with the indices of the available
drawables.

Syntax
getIONDrawableIndices(int[] iIndices)

Arguments
iIndices
An array of length getNumIndices that will be filled with the index values.
ION Guide IONGraphicsClient getFreeIndex()

130 Chapter 7: ION Class and Method Reference
Exceptions
None.

getNumIndices()
The getNumIndices() method returns the number of drawable indices currently
allocated.

Syntax
getNumIndices()

Return Value
The number of indices.

Arguments
None.

Exceptions
None.

Example
int num = getNumIndices();

readImage()
Use the readImage() method to read the contents of the current drawable.

Syntax
readImage()

readImage(int x0, int y0, int width, int height)

Arguments
x0
x start position of the rectangle to read.
IONGraphicsClient getNumIndices() ION Guide

Chapter 7: ION Class and Method Reference 131
y0
y start position of the rectangle to read.

width
The width of the rectangle to read.

height
The height of the rectangle to read.

Exceptions
None.

Example
Image im = readImage();

Image im = readImage(x0, y0, width, height);

removeIONDrawable()
Use the removeIONDrawable() method to remove an object that implements the
IONDrawable interface from the internal list of IONDrawable objects.

Syntax
removeIONDrawable(IONDrawable drawable)

removeIONDrawable(int index)

Arguments
drawable
The drawable to remove.

index
The index of the drawable to remove.

Exceptions
None.
ION Guide IONGraphicsClient removeIONDrawable()

132 Chapter 7: ION Class and Method Reference
setDecomposed()
Use the setDecomposed() method to set an individual connection to the ION Server to
use decomposed color mode. The decomposed color mode setting determines how ION
will display graphics on a True color (24-bit or 32-bit color) device. If the argument is true
(the default) a pixel value is treated as an RGB triplet. If the argument is false, the red
component of the pixel is treated as an index into the current color table. For more
information on decomposed color mode, see the documentation for the DECOMPOSED
keyword to the DEVICE procedure in the IDL Reference Guide.

Once set, decomposed color mode applies to all drawables associated with a given
connection.

Syntax
setDecomposed(boolean bDecomposed)

Arguments
bDecomposed
If bDecomposed is set to True, pixel values are interpreted as RGB triplets. (This is the
default behavior.) If bDecomposed is set to False, the first eight bits of the pixel value (the
red portion) are used as an index value into the currently loaded IDL color table.

Exceptions
None.

setIONDrawable()
Use the setIONDrawable() method to select which IONDrawable to use from the internal
list of IONDrawable objects.

Syntax
setIONDrawable(int iIndex)

Arguments
iIndex
The index that was returned from the addIONDrawable() method when the object was
added.
IONGraphicsClient setDecomposed() ION Guide

Chapter 7: ION Class and Method Reference 133
Exceptions
None.
ION Guide IONGraphicsClient setIONDrawable()

134 Chapter 7: ION Class and Method Reference
IONGrConnection
The IONGrConnection class represents a connection between the client and the ION
Server. It allows for the addition of multiple IONGrGraphic classes and has the primary
function of acting as a communication module between the IONGrGraphic classes and
the ION Server.

Class Declaration
public class IONGrConnection extends IONGraphicsClient

Methods

• IONGrConnection()
Construct an object of the IONGrConnection class.

• addDrawable()
Adds an IONGrDrawable class to this connection.

• connect()
Connect with an ION Server.

• debugMode()
Enable/Disable debug mode.

• disconnect()
Disconnect with an ION Server.

• executeIDLCommand()
Execute a given IDL command on the ION Server.

• getIDLVariable()
Get the value of an IDL variable on the ION Server.

• removeDrawable()
Removes an IONGrDrawable class from this connection.

• setDrawable()
Sets the current drawable.

• setIDLVariable()
Set the value of an IDL variable on the ION Server.

IONGrConnection()
The IONGrConnection() method constructs an object of the IONGrConnection class.
IONGrConnection IONGrConnection() ION Guide

Chapter 7: ION Class and Method Reference 135
Syntax
IONGrConnection()

Arguments
None.

Example
IONGrConnection con = new IONGrConnection();

addDrawable()
Use the addDrawable() method to add the specified ION graphic to the connection
object. Once added, the graphic can communicate with the ION Server and thus request
graphics and information.

Syntax
addDrawable(IONGrDrawable ionGraphic)

Arguments
ionGraphic
An object of the IONGrDrawable class to add to the connection object.

Exceptions
None.

Example
IONGrDrawable draw;

con.addDrawable(draw);

connect()
Use the connect() method to connect to the ION Server.
ION Guide IONGrConnection addDrawable()

136 Chapter 7: ION Class and Method Reference
Syntax
connect(String hostname [,int portnumber])

Arguments
hostname
A string containing the name of the host on which the ION Server is running.

portnumer
The portnumber of the host on which ION is running. If this number is not provided, the
default ION port number is used.

Exceptions
IOException
A network I/O error was detected during connection.

UnknownHostException
The specified hostname is unknown.

IONLicenseException
The ION Server could not be licensed.

Example
try{

con.connect(myhost);

}catch(IOException eIO) {

System.err.println(“IO error”);

}catch(UnknownHostException eUH) {

System.err.println(“Unknown Host error”);

}catch(IONLicenseException eIL) {

System.err.println(“IDL License error”);

}

debugMode()
Use the debugMode() method to enable and disable the debug mode of the class. When
debug mode is enabled, the command log output from the ION Server is displayed in a
window when a Shift-click (shifted mouse button-press) event is detected on the drawing
surface.
IONGrConnection debugMode() ION Guide

Chapter 7: ION Class and Method Reference 137
When debug mode is enabled, the class will buffer the output information for all
registered drawables sent by the ION Server to the client class.

Syntax
debugMode(boolean enable)

Arguments
enable
If true, the debug mode is enabled, otherwise the debug mode is disabled.

Exceptions
None.

Example
con.debugMode(true);

disconnect()
Use the disconnect() method to close the connection between the client application and
the ION Server. After a disconnect, no commands can be sent to the ION Server, but the
component is repainted as necessary.

Syntax
disconnect()

Arguments
None.

Exceptions
None.

Example
con.disconnect();
ION Guide IONGrConnection disconnect()

138 Chapter 7: ION Class and Method Reference
executeIDLCommand()
Use the executeIDLCommand() method to send an IDL command to the ION Server for
execution. Any graphical output resulting from the IDL command is displayed in the
IONGrDrawable drawing area.

Syntax
int iError = executeIDLCommand(String sCommand)

Return Value
The function returns the IDL system variable !ERROR

Arguments
sIDLCommand
A string containing a valid IDL command.

Exceptions
IOException
Network communication error detected. Server is disconnected

IONIllegalCommandException
The specified IDL command was illegal.

IONSecurityException
The specified IDL command is not allowed under the current ION security rules.

Example
try{

con.executeIDLCommand(“PLOT, FINDGEN(10)”);

}catch(IOException eIO) {

System.err.println(“IO error”);

}catch(IONIllegalCommandException eIC) {

System.err.println(“Illegal Command error”);

}catch(IONSecurityException eSE) {

System.err.println(“Security error”);

}

IONGrConnection executeIDLCommand() ION Guide

Chapter 7: ION Class and Method Reference 139
getIDLVariable()
Use the getIDLVariable() method to get the value of an IDL variable from the ION Server.

Syntax
getIDLVariable(String name)

Arguments
name
A string containing the name of the variable to get from the ION Server.

Exceptions
IOException
A network error was detected while retrieving the variable.

Example
try{

IDLVariable var = con.getIDLVariable(myvar);

}catch(IOException eIO) {

System.err.println(“IO error”);

}

removeDrawable()
Use the removeDrawable() method to remove a graphic from the connection object.
Once the graphic has been removed from the connection object, the graphic can no
longer communicate with the ION Server.

Syntax
IONGrDrawable draw =

removeDrawable(IONGrDrawable ionGraphic)

IONGrDrawable draw = removeDrawable(int iGraphic)

Return Value
A reference to the removed IONGrDrawable object.
ION Guide IONGrConnection getIDLVariable()

140 Chapter 7: ION Class and Method Reference
Arguments
ionGraphic
An object of the IONGrDrawable class that is being removed from the connection.

iGraphic
A zero-based integer index designating which IONGrDrawable object to remove from the
connection (the IDL window index).

Exceptions
None.

Example
IONGrDrawable draw = con.removeDrawable(iongraphic);

IONGrDrawable draw = con.removeDrawable(1);

setDrawable()
Use the setDrawable() method to designate which IONgrDrawable object will receive
graphical output from the ION Server.

Syntax
boolean bsuccess = setDrawable(IONGrDrawable ionGraphic)

boolean bsuccess = setDrawable(int iGraphic)

Return Value
This routine returns False if the specified drawable is not registered with the connection,
or True otherwise.

Arguments
ionGraphic
An instance of an IONGrDrawable object to set as the current drawable. This graphic
must have been registered with the IONGrConnection object via the addDrawable()
method.

iGraphic
A zero-based integer index designating which IONGrDrawable object to set as the current
drawable. This graphic must have been registered with the IONGrConnection object via
the addDrawable() method.
IONGrConnection setDrawable() ION Guide

Chapter 7: ION Class and Method Reference 141
Exceptions
None.

Example
boolean bSuccess = con.setDrawable(ionGraphic);

boolean bSuccess = con.setDrawable(1);

setIDLVariable()
Use the setIDLVariable() method to set the value of a variable on the ION Server. If the
variable is not present on the ION Server, a new variable is created.

Syntax
setIDLVariable(String sName, IDLVariable oVar)

Arguments
sName
A string containing the name of the variable to set.

oVar
The value the variable is to be set to.

Exceptions
IOException
An network error was detected.

Example
try{

con.setIDLVariable(myvar, 10);

}catch(IOException eIO) {

System.err.println(“IO error”);

}

ION Guide IONGrConnection setIDLVariable()

142 Chapter 7: ION Class and Method Reference
IONGrContour
The IONGrContour class produces an IDL-generated contour in a drawing area. The
class allows the user to enter data and set contour attributes at the program level.

Class Declaration
class IONGrContour extends IONGrGraphic

Methods

• IONGrContour()
Construct an object of the IONGrContour class.

• draw()
Produces the output graphic and displays the graphic on the drawing surface of this class.

• getProperty()
Used to get the value of a property.

• setProperty()
Used to set a property for the graphic.

• setXValue()
Sets the X value of the contour.

• setYValue()
Sets the Y value of the contour.

• setZValue()
Sets the Z data of the contour

IONGrContour()
The IONGrContour() method constructs an IONGrContour object.

Syntax
IONGrContour()

IONGrContour(int Z[][])

IONGrContour(float Z[][])

IONGrContour(double Z[][])

IONGrContour(int Z[])
IONGrContour IONGrContour() ION Guide

Chapter 7: ION Class and Method Reference 143
IONGrContour(float Z[])

IONGrContour(double Z[])

IONGrContour(String sName)

IONGrContour(int Z[], int X[], int Y[])

IONGrContour(int Z[][], int X[], int Y[])

IONGrContour(float Z[], float X[], float Y[])

IONGrContour(float Z[][], float X[], float Y[])

IONGrContour(double Z[], double X[], double Y[])

IONGrContour(double Z[][], double X[], double Y[])

IONGrContour(String sZName, String sXName, String sYName)

Arguments
Z
Z values (data) to use in the contour

sName, sZName
name of the IDL variable to use for the Z (data) values of the surface

X
array holding the values for the X coordinates of the grid.

Y
array holding the values for the Y coordinates of the grid.

sXName
name of the IDL variable holding the values for the X coordinates of the grid.

sYName
name of the IDL variable holding the values for the Y coordinates of the grid.

Exceptions
None.

draw()
Call the draw() method to produce and display a graphic in the drawing area that makes
up this object.
ION Guide IONGrContour draw()

144 Chapter 7: ION Class and Method Reference
Syntax
draw(IONGrConnection con)

Arguments
con
IONGrConnection used to issue the drawing commands to the server.

Exceptions
None.

getProperty()
Use the getProperty() method to get the current value of a property.

Syntax
getProperty(String Property)

Arguments
Property
The name of the property

Properties Supported
The following IDL Contour properties are supported by IONGrContour.[get,set]Property.
Refer to the IDL documentation on keywords available for use with the CONTOUR
procedure for an explanation of each property:

C_ANNOTATION, C_CHARSIZE, C_COLORS, C_LABELS, C_LINESTYLE,
C_ORIENTATION, C_SPACING, CLOSED, DOWNHILL, FILL, CELL_FILL, FOLLOW,
IRREGULAR, LEVELS, NLEVELS, OVERPLOT, BACKGROUND, CHARSIZE, CLIP,
COLOR, DATA, DEVICE, FONT, LINESTYLE, NOCLIP, NODATA, NOERASE,
NORMAL, POSITION, SUBTITLE, T3D, TICKLEN, TITLE, MAX_VALUE,
MIN_VALUE, NSUM, POLAR, XLOG, YNOZERO, YLOG, XCHARSIZE, YCHARSIZE,
ZCHARSIZE, XGRIDSTYLE, YGRIDSTYLE, ZGRIDSTYLE, XMARGIN, YMARGIN,
ZMARGIN, XMINOR, YMINOR, ZMINOR, XRANGE, YRANGE, ZRANGE, XSTYLE,
YSTYLE, ZSTYLE, XTICKFORMAT, YTICKFORMAT, ZTICKFORMAT, XTICKLEN,
YTICKLEN, ZTICKLEN, XTICKNAME, YTICKNAME, ZTICKNAME, XTICKS,
YTICKS, ZTICKS, XTICKV, YTICKV, ZTICKV, XTITLE, YTITLE, ZTITLE, ZVALUE,
ZAXIS
IONGrContour getProperty() ION Guide

Chapter 7: ION Class and Method Reference 145
Exceptions
None.

Example
IONVariable value = getProperty(Property);

setProperty()
Use the setProperty() method to set a property for the contour object.

Syntax
setProperty(String Property, IONVariable Value)

Arguments
Property
The name of the property to set.

Value
The value of the property

Properties Supported
The following IDL Contour properties are supported by IONGrContour.[get,set]Property.
Refer to the IDL documentation on keywords available for use with the CONTOUR
procedure for an explanation of each property:

C_ANNOTATION, C_CHARSIZE, C_COLORS, C_LABELS, C_LINESTYLE,
C_ORIENTATION, C_SPACING, CLOSED, DOWNHILL, FILL, CELL_FILL, FOLLOW,
IRREGULAR, LEVELS, NLEVELS, OVERPLOT, BACKGROUND, CHARSIZE, CLIP,
COLOR, DATA, DEVICE, FONT, LINESTYLE, NOCLIP, NODATA, NOERASE,
NORMAL, POSITION, SUBTITLE, T3D, TICKLEN, TITLE, MAX_VALUE,
MIN_VALUE, NSUM, POLAR, XLOG, YNOZERO, YLOG, XCHARSIZE, YCHARSIZE,
ZCHARSIZE, XGRIDSTYLE, YGRIDSTYLE, ZGRIDSTYLE, XMARGIN, YMARGIN,
ZMARGIN, XMINOR, YMINOR, ZMINOR, XRANGE, YRANGE, ZRANGE, XSTYLE,
YSTYLE, ZSTYLE, XTICKFORMAT, YTICKFORMAT, ZTICKFORMAT, XTICKLEN,
YTICKLEN, ZTICKLEN, XTICKNAME, YTICKNAME, ZTICKNAME, XTICKS,
YTICKS, ZTICKS, XTICKV, YTICKV, ZTICKV, XTITLE, YTITLE, ZTITLE, ZVALUE,
ZAXIS

Exceptions
None.
ION Guide IONGrContour setProperty()

146 Chapter 7: ION Class and Method Reference
setXValue()
Use the setXValue() method to reset the X value of the contour.

Syntax
setXValue(int X[])

setXValue(float X[])

setXValue(double X[])

setXValue(String sName)

Arguments
X
The new X value of the contour.

sName
The name of the IDL variable that contains the new X value of the surface

Exceptions
None

setYValue()
Use the setYValue() method to reset the Y value of the contour.

Syntax
setYValue(int Y[])

setYValue(float Y[])

setYValue(double Y[])

setYValue(String sName)

Arguments
Y
The new Y value of the contour
IONGrContour setXValue() ION Guide

Chapter 7: ION Class and Method Reference 147
sName
The name of the IDL variable that contains the new Y value of the contour

Exceptions
None

setZValue()
Use the setZValue() method to reset the Z value of the contour.

Syntax
setZValue(int Z[])

setZValue(float Z[])

setZValue(double Z[])

setZValue(int Z[][])

setZValue(float Z[][])

setZValue(double Z[][])

setZValue(String sName)

Arguments
Z
The new Z value of the contour

sName
The name of the IDL variable that contains the new Z value of the contour

Exceptions
None
ION Guide IONGrContour setZValue()

148 Chapter 7: ION Class and Method Reference
IONGrDrawable
Objects of the IONGrDrawable class represent a drawing area for IDL-produced graphics
that can be part of a Java AWT. The IONGrDrawable can act alone as a drawing area or it
can contain many IONGrGraphic objects. The way in which multiple Graphic objects are
displayed in the drawable can be controlled using setNoErase() and setMulti().

Class Declaration
class IONGrDrawable extends IONCanvas

Methods

• IONGrDrawable()
Construct an object of the IONGrDrawable class.

• addGraphic()
Add a graphic object to be drawn.

• draw()
Draw all graphic objects in the drawable.

• executeIDLCommand()
Execute an IDL command on the ION Server.

• getConnection()
Get the connection object associated with this server.

• isConnected()
This method returns true if the drawable is associated with a server.

• removeGraphic()
Remove a graphic object from the drawable.

• resetMulti()
Reset “multi mode” to one visible drawable at a time.

• sendIDLCommand()
Send an IDL command to the ION Server.

• setMulti()
Specify how multiple graphic objects will be drawn in the server.

• setNoErase()
Specify whether the drawable should be erased when new graphic is drawn.
IONGrDrawable setZValue() ION Guide

Chapter 7: ION Class and Method Reference 149
IONGrDrawable()
The IONGrDrawable() method constructs an IONGrDrawable object of a specified size.

Syntax
IONGrDrawable(int iWidth, int iHeight)

Arguments
iWidth
The width of the drawing area.

iHeight
The height of the drawing area.

Exceptions
None.

addGraphic()
Use the addGraphic() method to add an IONGrGraphic to the drawable. Calling the
draw() method causes all the graphics added in this manner to be displayed in the
drawing area.

Syntax
addGraphic(IONGrGraphic ionGraphic)

Arguments
ionGraphic
graphic object to add.

Exceptions
None.

Example
addGraphic(ionGraphic);
ION Guide IONGrDrawable IONGrDrawable()

150 Chapter 7: ION Class and Method Reference
draw()
Use the draw() method to draw all the graphics objects associated with this drawable. If
there are no graphics objects associated, nothing happens.

Syntax
draw()

Arguments
None.

Exceptions
None.

executeIDLCommand()
Use the executeIDLCommand() method to send an IDL command to the ION Server for
execution. Any resultant graphics is displayed in the IONGraphic drawing area.

Syntax
int iError = executeIDLCommand(String sCommand)

Return Value
The function returns the IDL system variable !ERROR

Arguments
sIDLCommand
A string containing a valid IDL command.

Exceptions
IOException
Network communication error detected. Server is disconnected

IONIllegalCommandException
The specified IDL command was illegal.
IONGrDrawable draw() ION Guide

Chapter 7: ION Class and Method Reference 151
IONSecurityException
The specified IDL command is not allowed under the current ION security rules.

getConnection()
The getConnection() method returns the IONGrConnection object that this object is
associated with. If no connection is associated with this object null is returned.

Syntax
getConnection()

Arguments
None.

Exceptions
None.

Example
IONGrConnection conn = getConnection();

isConnected()
The isConnected() method returns true if the Drawable is associated with a
IONGrConnection.

Syntax
isConnected()

Arguments
None

Exceptions
None
ION Guide IONGrDrawable getConnection()

152 Chapter 7: ION Class and Method Reference
Example
boolean connected = isConnected();

removeGraphic()
Use the removeGraphic() method to remove an IONGrGraphic from the drawable. The
removeGraphic() method returns true on success or false if the specified graphic is not
currently part of the system.

Syntax
removeGraphic(IONGrGraphic ionGraphic)

Arguments
ionGraphic
A graphic to remove from the drawable.

Exceptions
None.

Example
removeGraphic(ionGraphic);

resetMulti()
Use the resetMulti() method to reset the !P.multi system variable to 0 (one plot at a time,
using the entire drawing area).

Syntax
resetMulti()

Arguments
None.
IONGrDrawable removeGraphic() ION Guide

Chapter 7: ION Class and Method Reference 153
Exceptions
None.

sendIDLCommand()
Use the sendIDLCommand() method to send an IDL command to the ION Server for
execution. The IDL command is posted to the server for execution and the function
returns. Notification of the commands completion is performed via the
IONCommandDoneListener interface.

Syntax
sendIDLCommand(String sCommand)

Arguments
sCommand
The IDL Command that is to be executed on the ION Server. The of the spawn command
and the line continuation character ($) is prohibited (for security reasons, and because
they can hang the server).

Exceptions
IOException
An error was detected during the IO operations used for communication.

setMulti()
Use the setMulti() method to set the !P.multi system variable that determines how
multiple IDL plots or IONGrGraphics objects are displayed on the drawing area.

Syntax
setMulti(int iMulti[])

Arguments
iMulti
array defining the layout. See the IDL documentation for more information.
ION Guide IONGrDrawable sendIDLCommand()

154 Chapter 7: ION Class and Method Reference
Exceptions
None.

setNoErase()
Use the setNoErase() method to specify whether or not the drawable should be erased
between IONGrGraphic objects when the draw() method is called.

Syntax
setNoErase()

Arguments
bNoErase
if the drawing area should not be erased.

Exceptions
None.
IONGrDrawable setNoErase() ION Guide

Chapter 7: ION Class and Method Reference 155
IONGrGraphic
The IONGrGraphic abstract class implements methods that are used by sub-classes to
manage and store properties.

Class Declaration
abstract class IONGrGraphic

Methods

• IONGrGraphic()
Construct an object of the IONGrGraphic class.

• draw()
the object.

• getProperty()
the value of the given property.

• getPropertyString()
a string that represents the properties. This string can then used with an IDL command.

• setNoErase()
the object whether or not it should be erased when another object drawn.

• setProperty()
the value of a property in the property list.

• registerProperty()
a valid property.

IONGrGraphic()
The IONGrGraphic() method constructs an object of the IONGrGraphic class.

Syntax
IONGrGraphic()

Arguments
None.
ION Guide IONGrGraphic IONGrGraphic()

156 Chapter 7: ION Class and Method Reference
Exceptions
None.

draw()
The draw() method is defined by sub-classes to issue the appropriate IDL command to
draw the graphic object.

Syntax
draw(IONGrConnection con)

Arguments
con
IONGrConnection used to issue the drawing commands to the server.

Exceptions
None.

Example
draw(con);

getProperty()
The getProperty() method returns the value of a property. The property is returned as an
object. It is the responsibility of the caller to cast the object to the correct type.

Syntax
getProperty(String sProperty)

Arguments
sProperty
The name of the property.
IONGrGraphic draw() ION Guide

Chapter 7: ION Class and Method Reference 157
Exceptions
None.

Example
IONVariable = getProperty(sProperty);

getPropertyString()
The getPropertyString() method returns a string that contains the values of all the
properties contained in the object. The string is formatted such that each property name
makes up an IDL keyword and the value of the property is the value of the keyword. This
string can be appended to an IDL graphics command string.

Note This is a protected method, and can only be accessed from objects that subclass the
IONGrGraphic class.

Syntax
getPropertyString()

Arguments
None.

Exceptions
None.

Example
String sProperties = getPropertyString();

setNoErase()
The setNoErase() method is defined by subclasses to set the appropriate property for the
graphic object that corresponds to the concept of ’no erase’.

Syntax
setNoErase(boolean bFlag)
ION Guide IONGrGraphic getPropertyString()

158 Chapter 7: ION Class and Method Reference
Arguments
bFlag
if the object is not to be erased when other objects are drawn.

Exceptions
None.

Example
setNoErase(bFlag);

setProperty()
The setProperty() method is used to set the value of a property in the objects property
list. If the property already exists in the property list, it’s value is replaced, otherwise the
property is added to the property list.

Syntax
setProperty(String sProperty, IONVarible value)

Arguments
sProperty
The name of the property to set.

value
The value of the property. This must be an object or an array.

Exceptions
None.

Example
void setProperty(sProperty, value);
IONGrGraphic setProperty() ION Guide

Chapter 7: ION Class and Method Reference 159
registerProperty()
The registerProperty() method is used to register a property name as being valid. When
the setProperty() or getProperty() methods are called, they check the validity of the
object against the list of valid properties.

Note This is a protected method, and can only be accessed from objects that subclass the
IONGrGraphic class.

Syntax
registerProperty(String PropertyName)

Arguments
PropertyName
Name of the property.

Exceptions
None.

Example
protected registerProperty(PropertyName);
ION Guide IONGrGraphic registerProperty()

160 Chapter 7: ION Class and Method Reference
IONGrPlot
The IONGrPlot class produces an IDL generated plot in a drawing area. The class allows
the user to enter data and plot attributes at the program level.

Class Declaration
class IONGrPlot extends IONGrGraphic

Methods

• IONGrPlot()
Construct an object of the IONPlot class.

• draw()
Produces the output graphic and displays the graphic on the drawing surface of this class.

• getProperty()
Used to get the value of a property.

• setProperty()
Used to set a property for the graphic.

• setXValue()
Sets the X value of the plot.

• setYValue()
Sets the Y value of the plot.

IONGrPlot()
The IONGrPlot() method constructs an object of the IONGrPlot class.

Syntax
IONGrPlot()

IONGrPlot(int X[] [, int Y[]])

IONGrPlot(float X[] [, float Y[]])

IONGrPLot(double X[] [, double Y[]])

IONGrPLot(String sXName)

IONGrPlot(String sXName, String sYname)
IONGrPlot IONGrPlot() ION Guide

Chapter 7: ION Class and Method Reference 161
Arguments
X
X values of the plot

Y
Y values of the plot

sXName
The name of an IDL variable to use for the X values in this plot.

sYName
The name of an IDL variable to use for the Y values in this plot.

Exceptions
None.

draw()
Use the draw() method to display the plot in the drawing area that makes up this object.

Syntax
draw(IONGrConnection con)

Arguments
con
IONGrConnection used to issue the drawing commands to the server.

Exceptions
None.

Example
draw(con);

getProperty()
Use the getProperty() method to get the current value of a property.
ION Guide IONGrPlot draw()

162 Chapter 7: ION Class and Method Reference
Syntax
getProperty(String Property)

Arguments
Property
The name of the property

Properties Supported
The following IDL Plot properties are supported by IONGrPlot.[get,set]Property. Refer to
the IDL documentation on keywords available for use with the PLOT procedure for an
explanation of each property:

BACKGROUND, CHARSIZE, CLIP, COLOR, DATA, DEVICE, FONT, LINESTYLE,
NOCLIP, NODATA, NOERASE, NORMAL, POSITION, PSYM, SUBTITLE, SYMSIZE,
T3D, TICKLEN, TITLE, MAX_VALUE, MIN_VALUE, NSUM, POLAR, XLOG,
YNOZERO, YLOG, ZLOG

Exceptions
IONInvalidPropertyException
if the property is not valid for the object.

Examples
IONVariable value = getProperty(Property);

setProperty()
Use the setProperty() method to set a property for the plot object.

Syntax
setProperty(String Property, IONVariable Value)

Arguments
Property
The name of the property to set.

Value
The value of the property
IONGrPlot setProperty() ION Guide

Chapter 7: ION Class and Method Reference 163
Properties Supported
The following IDL Plot properties are supported by IONGrPlot.[get,set]Property. Refer to
the IDL documentation on keywords available for use with the PLOT procedure for an
explanation of each property:

BACKGROUND, CHARSIZE, CLIP, COLOR, DATA, DEVICE, FONT, LINESTYLE,
NOCLIP, NODATA, NOERASE, NORMAL, POSITION, PSYM, SUBTITLE, SYMSIZE,
T3D, TICKLEN, TITLE, MAX_VALUE, MIN_VALUE, NSUM, POLAR, XLOG,
YNOZERO, YLOG, ZLOG

Exceptions
None.

Example
setProperty(Property, Value);

setXValue()
Use the setXValue() method to reset the X value of the plot

Syntax
setXValue(int X[])

setXValue(float X[])

setXValue(double X[])

setXValue(String sName)

Arguments
X
The new X value of the plot

sName
The name of an IDL variable to use for the X value.

Exceptions
None.
ION Guide IONGrPlot setXValue()

164 Chapter 7: ION Class and Method Reference
setYValue()
Use the setYValue() method to reset the Y value of the plot

Syntax
setYValue(int Y[])

setYValue(float Y[])

setYValue(double Y[])

setYValue(String sName)

Arguments
Y
The new Y value of the plot

sName
The name of the IDL variable to use for the Y value.

Exceptions
None.
IONGrPlot setYValue() ION Guide

Chapter 7: ION Class and Method Reference 165
IONGrSurface
The IONGrSurface class produces an IDL-generated surface in a drawing area. The class
allows the user to enter data and set surface attributes at the program level.

Class Declaration
class IONGrSurface extends IONGrGraphic

Methods

• IONGrSurface()
Construct an object of the IONGrSurface class.

• draw()
Produces the output graphic and displays the graphic on the drawing surface of this class.

• getProperty()
Used to get the value of a property.

• setProperty()
Used to set a property for the graphic.

• setXValue()
Sets the X value of the surface.

• setYValue()
Sets the Y value of the surface.

• setZValue()
Sets the Z data of the surface

IONGrSurface()
The IONGrSurface() method constructs an object of the IONGrSurface class.

Syntax
IONGrSurface()

IONGrSurface(int Z[][])

IONGrSurface(float Z[][])

IONGrSurface(double Z[][])

IONGrSurface(String sName)
ION Guide IONGrSurface IONGrSurface()

166 Chapter 7: ION Class and Method Reference
IONGrSurface(int Z[][], int X[], int Y[])

IONGrSurface(float Z[][], float X[], float Y[])

IONGrSurface(double Z[][], double X[], double Y[])

IONGrSurface(String sZName, String sXName, String sYName)

Arguments
Z
Z (data) values for the surface

sName, sZName
name of the IDL variable to use for the Z (data) of the surface

X
array holding the values for the X coordinates of grid.

Y
array holding the values for the Y coordinates of grid.

sXName
name of the IDL variable holding the values for X coordinates of the grid.

sYName
name of the IDL variable holding the values for Y coordinates of the grid.

Exceptions
None.

draw()
Use the draw() method to display the surface in the drawing area that makes up this
object.

Syntax
draw(IONGrConnection con)

Arguments
con
IONGrConnection used to issue the drawing commands to the server.
IONGrSurface draw() ION Guide

Chapter 7: ION Class and Method Reference 167
Exceptions
None.

getProperty()
Use the getProperty() method to get the current value of a property.

Syntax
getProperty(String Property)

Arguments
Property
The name of the property

Properties Supported
The following IDL Surface properties are supported by IONGrSurface.[get,set]Property.
Refer to the IDL documentation on keywords available for use with the SURFACE
procedure for an explanation of each property:

AX, AZ, BOTTOM, HORIZONTAL, LEGO, LOWER_ONLY, SAVE, SHADES,
UPPER_ONLY, ZAXIS, BACKGROUND, CHARSIZE, CLIP, COLOR, DATA, DEVICE,
FONT, LINESTYLE, NOCLIP, NODATA, NOERASE, NORMAL, POSITION,
SUBTITLE, T3D, TICKLEN, TITLE, MAX_VALUE, MIN_VALUE, NSUM, POLAR,
XLOG, YNOZERO, YLOG, XCHARSIZE, YCHARSIZE, ZCHARSIZE, XGRIDSTYLE,
YGRIDSTYLE, ZGRIDSTYLE, XMARGIN, YMARGIN, ZMARGIN, XMINOR,
YMINOR, ZMINOR, XRANGE, YRANGE, ZRANGE, XSTYLE, YSTYLE, ZSTYLE,
XTICKFORMAT, YTICKFORMAT, ZTICKFORMAT, XTICKLEN, YTICKLEN,
ZTICKLEN, XTICKNAME, YTICKNAME, ZTICKNAME, XTICKS, YTICKS, ZTICKS,
XTICKV, YTICKV, ZTICKV, XTITLE, YTITLE, ZTITLE, ZVALUE, ZLOG

Exceptions
None.

Example
IONVariable value = getProperty(Property);
ION Guide IONGrSurface getProperty()

168 Chapter 7: ION Class and Method Reference
setProperty()
Use the setProperty() method to set a property for the surface object.

Syntax
setProperty(String Property, IONVarible Value)

Arguments
Property
The name of the property to set.

Value
The value of the property

Properties Supported
The following IDL Surface properties are supported by IONGrSurface.[get,set]Property.
Refer to the IDL documentation on keywords available for use with the SURFACE
procedure for an explanation of each property:

AX, AZ, BOTTOM, HORIZONTAL, LEGO, LOWER_ONLY, SAVE, SHADES,
UPPER_ONLY, ZAXIS, BACKGROUND, CHARSIZE, CLIP, COLOR, DATA, DEVICE,
FONT, LINESTYLE, NOCLIP, NODATA, NOERASE, NORMAL, POSITION,
SUBTITLE, T3D, TICKLEN, TITLE, MAX_VALUE, MIN_VALUE, NSUM, POLAR,
XLOG, YNOZERO, YLOG, XCHARSIZE, YCHARSIZE, ZCHARSIZE, XGRIDSTYLE,
YGRIDSTYLE, ZGRIDSTYLE, XMARGIN, YMARGIN, ZMARGIN, XMINOR,
YMINOR, ZMINOR, XRANGE, YRANGE, ZRANGE, XSTYLE, YSTYLE, ZSTYLE,
XTICKFORMAT, YTICKFORMAT, ZTICKFORMAT, XTICKLEN, YTICKLEN,
ZTICKLEN, XTICKNAME, YTICKNAME, ZTICKNAME, XTICKS, YTICKS, ZTICKS,
XTICKV, YTICKV, ZTICKV, XTITLE, YTITLE, ZTITLE, ZVALUE, ZLOG

Exceptions
None.

setXValue()
Use the setXValue() method to reset the X value of the surface

Syntax
setXValue(int X[])
IONGrSurface setProperty() ION Guide

Chapter 7: ION Class and Method Reference 169
setXValue(float X[])

setXValue(double X[])

setXValue(String sName)

Arguments
X
The new X value of the surface

sName
The name of the IDL variable that contains the new X value of the surface

Exceptions
None.

Examples

setYValue()
Use the setYValue() method to reset the Y value of the surface

Syntax
setYValue(int Y[])

setYValue(float Y[])

setYValue(double Y[])

setYValue(String sName)

Arguments
Y
The new Y value of the surface.

sName
The name of the IDL variable that contains the new Y value of the surface.
ION Guide IONGrSurface setYValue()

170 Chapter 7: ION Class and Method Reference
Exceptions
None.

setZValue()
Use the setZValue() method to reset the Z value of the surface

Syntax
setZValue(int Z[][])

setZValue(float Z[][])

setZValue(double Z[][])

setZValue(String sName)

Arguments
Z
The new Z value of the surface

sName
The name of the IDL variable that contains the new Z value of the surface

Exceptions
None.
IONGrSurface setZValue() ION Guide

Chapter 7: ION Class and Method Reference 171
IONMouseListener
The IONMouseListener interface class defines the callback methods an object must
define to be notified of mouse events occurring on an object that implements the
IONDrawable interface.

Class Declaration
public interface IONMouseListener

Methods

• mousePressed()
Called when a mouse button down event occurred.

• mouseMoved()
Called when the mouse moved.

• mouseReleased()
Called when a mouse button up event occurred.

mouseMoved()
Call the mouseMoved() method when a mouse cursor is moved in a drawable. Note that
the Mouse Listener must have been registered in the drawable prior to calling
mouseMoved().

Syntax
mouseMoved(IONDrawable drawable, int X, int Y, long when,

int mask)

Arguments
drawable
The IONDrawable object that the event occurred in.

X
The X location of the mouse

Y
The Y location of the mouse
ION Guide IONMouseListener mouseMoved()

172 Chapter 7: ION Class and Method Reference
when
The time when the event happened.

mask
Current mouse button state.

Exceptions
None

mousePressed()
Call the mousePressed() method when a mouse button is pressed in a drawable. Note that
the Mouse Listener must have been registered in the drawable prior to calling
mousePressed().

Syntax
mousePressed(IONDrawable drawable, int X, int Y, long when,

int mask)

Arguments
drawable
The IONDrawable object that the event occurred in.

X
The X location of the mouse.

Y
The Y location of the mouse.

when
the time when the event happened.

mask
Which button was pressed.

Exceptions
None
IONMouseListener mousePressed() ION Guide

Chapter 7: ION Class and Method Reference 173
Example

mouseReleased()
Call the mouseReleased() method when a mouse button is released in a drawable. Note
that the Mouse Listener must have been registered in the drawable prior to calling
mouseReleased().

Syntax
mouseReleased(IONDrawable drawable, int X, int Y, long when,

int mask)

Arguments
drawable
The IONDrawable object that the event occurred in.

X
The X location of the mouse

Y
The Y location of the mouse

when
The time when the event happened.

mask
Current mouse button state. The left mouse button is represented by 1 (one), the middle
mouse button by 2, and the right mouse button by 4.

Note In Unix versions of Java, it is impossiible to determine which mouse button was
released if more than one button was pressed before the button release. As a result,
on Unix platforms ION reports the following button release events:

Button release events are reported correctly in Windows versions of Java.

Buttons Pressed Button Release
Reported by ION

left and middle left

left and right left

middle and right right

left, middle, and right left
ION Guide IONMouseListener mouseReleased()

174 Chapter 7: ION Class and Method Reference
Exceptions
None.
IONMouseListener mouseReleased() ION Guide

Chapter 7: ION Class and Method Reference 175
IONOffScreen
Objects of the IONOffScreen class represent an invisible drawing area that graphic output
can be placed on.

Class Declaration
public class IONOffScreen implements IONDrawable

Methods

• IONOffScreen()
Construct an object of the IONOffScreen class.

See also the descriptions of the IONDrawable interface class.

IONOffScreen()
The IONOffScreen() method constructs an object of the IONOffscreen class.

Syntax
IONOffScreen(int width, int height, Component comp)

Arguments
width
The width of the drawing area

height
The height of the drawing area

comp
A visible used to create images. This needs to be a component that is already visible on
the users screen in order for the OffScreen to be properly created.

Exceptions
None

Example
IONOffScreen offscreen = new IONOffScreen();
ION Guide IONOffScreen IONOffScreen()

176 Chapter 7: ION Class and Method Reference
IONOffScreen IONOffScreen() ION Guide

Chapter 7: ION Class and Method Reference 177
IONOutputListener
The IONOutputListener interface class defines the method that an object must
implement to receive ION Server output text.

Class Declaration
public interface IONOutputListener

Methods

• IONOutputText()
Retrieve a line of text from the ION Server.

IONOutputText()
The IONOutputText() method is called when a line of output text is available from the
ION Server.

Syntax
IONOutputText(String sLine)

Arguments
sLine
A line of output text from the ION Server.

Exceptions
None.
ION Guide IONOutputListener IONOutputText()

178 Chapter 7: ION Class and Method Reference
IONPaletteFilter
The IONPaletteFilter class is used to implement an ION version of a Java ImageFilter.
This image filter is used to change the color palette (table) being used. The Java Image
scheme uses image filter object to change attributes and perform operations on images
and as such the IONPaletteFilter is used to change the color table of indexed color
systems.

Class Declaration
public class IONPaletteFilter extends ImageFilter

Methods

• IONPaletteFilter()
Construct an object of the IONPaletteFilter class.

• getColor()
Returns a Color object given an index into the color palette.

• getIndexModel()
Returns the IndexColorModel object for this filter

IONPaletteFilter()
The IONPaletteFilter() method constructs an object of the IONPaletteFilter class with a
color Palette that contains the passed in red, green and blue values

Syntax
IONPaletteFilter(byte r[], byte g[], byte b[])

Arguments
r
The red values for the color palette

g
The green values for the color palette

b
The blue values for the color palette.
IONPaletteFilter IONPaletteFilter() ION Guide

Chapter 7: ION Class and Method Reference 179
Exceptions
None.

getColor()
The getColor() method returns a Color object that represents the color at the given index
into the color palette of the filter.

Syntax
getColor(int index)

Arguments
index
The index into the color palette. The red, green and blue values at this location are used
to construct the Color object.

Exceptions
None.

Example
Color color = getColor(index);

getIndexModel()
The getIndexModel() method returns the current IndexColorModel that is being used by
the filter

Syntax
getIndexModel()

Arguments
None.
ION Guide IONPaletteFilter getColor()

180 Chapter 7: ION Class and Method Reference
Exceptions
None.

Example
IndexColorModel icm = getIndexModel();
IONPaletteFilter getIndexModel() ION Guide

Chapter 7: ION Class and Method Reference 181
IONPlot
The IONPlot class extends the IONGrDrawable class and contains an IONGrPlot to
provide a easy way of drawing IDL plots. It can be inserted into an AWT tree.

Class Declaration
public class IONPlot extends IONGrDrawable

Methods

• IONPlot()
Construct an object of the IONPlot class.

• draw()
Produces the output graphic and displays the graphic on the drawing surface of this class.

• getProperty()
Used to get the value of a property.

• setProperty()
Used to set a property for the graphic.

• setXValue()
Sets the X value of the plot.

• setYValue()
Sets the Y value of the plot.

IONPlot()
The IONPlot() method constructs an object of the IONPlot class.

Syntax
IONPlot(int iWidth, int iHeight)

IONPlot(int iWidth, int iHeight, int X[] [, int Y[]])

IONPlot(int iWidth, int iHeight, float X[] [, float Y[]])

IONPlot(int iWidth, int iHeight, double X[] [, double Y[]])

IONPlot(int iWidth, int iHeight, String sXName)

IONPlot(int iWidth, int iHeight, String sYName)
ION Guide IONPlot IONPlot()

182 Chapter 7: ION Class and Method Reference
Arguments
iWidth
The width of the plot.

iHeight
The height of the plot.

X
The X values of the plot

Y
The Y values of the plot

sXName
The name of an IDL variable to use for the X values of this plot.

sYName
The name of an IDL variable to use for the Y values of this plot.

Exceptions
None.

draw()
Use the draw() method to produce and display a graphic in the drawing area that makes
up this object.

Syntax
draw()

Arguments
None.

Exceptions
None.
IONPlot draw() ION Guide

Chapter 7: ION Class and Method Reference 183
getProperty()
Use the getProperty() method to get the current value of a property.

Syntax
getProperty(String Property)

Arguments
Property
The name of the property

Properties Supported
The following IDL Plot properties are supported by IONPlot.[get,set]Property. Refer to the
IDL documentation on keywords available for use with the Plot procedure for an
explanation of each property:

BACKGROUND, CHARSIZE, CLIP, COLOR, DATA, DEVICE, FONT, LINESTYLE,
NOCLIP, NODATA, NOERASE, NORMAL, POSITION, PSYM, SUBTITLE, SYMSIZE,
T3D, TICKLEN, TITLE, MAX_VALUE, MIN_VALUE, NSUM, POLAR, XLOG,
YNOZERO, YLOG, ZLOG

Exceptions
None.

Example
IONVariable value = getProperty(Property);

setProperty()
Use the setProperty() method to set a property for the plot object.

Syntax
setProperty(String Property, IONVariable Value)

Arguments
Property
The name of the property to set.
ION Guide IONPlot getProperty()

184 Chapter 7: ION Class and Method Reference
Value
The value of the property

Properties Supported
The following IDL Plot properties are supported by IONPlot.[get,set]Property. Refer to the
IDL documentation on keywords available for use with the Plot procedure for an
explanation of each property:

BACKGROUND, CHARSIZE, CLIP, COLOR, DATA, DEVICE, FONT, LINESTYLE,
NOCLIP, NODATA, NOERASE, NORMAL, POSITION, PSYM, SUBTITLE, SYMSIZE,
T3D, TICKLEN, TITLE, MAX_VALUE, MIN_VALUE, NSUM, POLAR, XLOG,
YNOZERO, YLOG, ZLOG

Exceptions
None.

setXValue()
Use the setXValue() method to reset the X value of the plot

Syntax
setXValue(int X[])

setXValue(float X[])

setXValue(double X[])

setXValue(String sName)

Arguments
X
The new X value of the plot

sName
The name of an IDL variable to use for the X value.

Exceptions
None
IONPlot setXValue() ION Guide

Chapter 7: ION Class and Method Reference 185
setYValue()
Use the setYValue() method to reset the Y value of the plot

Syntax
setYValue(int Y[])

setYValue(float Y[])

setYValue(double Y[])

setYValue(String sName)

Argument
Y
The new Y value of the plot

sName
The name of the IDL variable to use for the Y value.

Exceptions
None
ION Guide IONPlot setYValue()

186 Chapter 7: ION Class and Method Reference
IONSurface
The IONSurface class extends the IONGrDrawable class and contains an IONGrSurface
object to provide a easy way of drawing IDL surfaces. It can be inserted into an AWT tree.

Class Declaration
public class IONSurface extends IONGrDrawable

Methods

• IONSurface()
Construct an object of the IONSurface class.

• draw()
Produces the output graphic and displays the graphic on the drawing surface of this class.

• getProperty()
Used to get the value of a property.

• setProperty()
Used to set a property for the graphic.

• setXValue()
Sets the X value of the surface.

• setYValue()
Sets the Y value of the surface.

• setZValue()
Sets the Z data of the surface

IONSurface()
Use the IONSurface() method to construct an object of the IONSurface class.

Syntax
IONSurface(int iWidth, int iHeight)

IONSurface(int iWidth, int iHeight, int Z[][])

IONSurface(int iWidth, int iHeight, float Z[][])

IONSurface(int iWidth, int iHeight, double Z[][])

IONSurface(int iWidth, int iHeight, String sName)
IONSurface IONSurface() ION Guide

Chapter 7: ION Class and Method Reference 187
IONSurface(int iWidth, int iHeight, int Z[][], int X[],
int Y[])

IONSurface(int iWidth, int iHeight, float Z[][], float X[],
float Y[])

IONSurface(int iWidth, int iHeight, double Z[][],
double X[], double Y[])

IONSurface(int iWidth, int iHeight, String sZName,
String sXName, String sYName)

Arguments
iWidth
The width of the plot.

iHeight
The height of the plot.

Z
The Z (data) values for the surface

sName, sZName
The name of the IDL variable to use for the Z (data) values of the surface

X
An array holding the values for the X coordinates of the grid.

Y
An array holding the values for the Y coordinates of the grid.

sXName
The name of the IDL variable holding the values for the X coordinates of the grid.

sYName
The name of the IDL variable holding the values for the Y coordinates of the grid.

Exceptions
None.

draw()
Use the draw() method to produce and display a graphic in the drawing area that makes
up this object.
ION Guide IONSurface draw()

188 Chapter 7: ION Class and Method Reference
Syntax
draw()

Arguments
None

Exceptions
None.

getProperty()
Use the getProperty() method to get the current value of a property.

Syntax
getPropety(String Property)

Arguments
Property
The name of the property

Properties Supported
The following IDL Surface properties are supported by IONSurface.[get,set]Property. Refer
to the IDL documentation on keywords available for use with the SURFACE procedure for
an explanation of each property:

AX, AZ, BOTTOM, HORIZONTAL, LEGO, LOWER_ONLY, SAVE, SHADES,
UPPER_ONLY, ZAXIS, BACKGROUND, CHARSIZE, CLIP, COLOR, DATA, DEVICE,
FONT, LINESTYLE, NOCLIP, NODATA, NOERASE, NORMAL, POSITION,
SUBTITLE, T3D, TICKLEN, TITLE, MAX_VALUE, MIN_VALUE, NSUM, POLAR,
XLOG, YNOZERO, YLOG, XCHARSIZE, YCHARSIZE, ZCHARSIZE, XGRIDSTYLE,
YGRIDSTYLE, ZGRIDSTYLE, XMARGIN, YMARGIN, ZMARGIN, XMINOR,
YMINOR, ZMINOR, XRANGE, YRANGE, ZRANGE, XSTYLE, YSTYLE, ZSTYLE,
XTICKFORMAT, YTICKFORMAT, ZTICKFORMAT, XTICKLEN, YTICKLEN,
ZTICKLEN, XTICKNAME, YTICKNAME, ZTICKNAME, XTICKS, YTICKS, ZTICKS,
XTICKV, YTICKV, ZTICKV, XTITLE, YTITLE, ZTITLE, ZVALUE, ZLOG

Exceptions
None.
IONSurface getProperty() ION Guide

Chapter 7: ION Class and Method Reference 189
Example
IONVariable value = getProperty(Property);

setProperty()
Use the setProperty() method to set a property for the plot object.

Syntax
setProperty(String Property, IONVariable Value)

Arguments
Property
The name of the property to set.

Value
The value of the property

Properties Supported
The following IDL Surface properties are supported by IONSurface.[get,set]Property. Refer
to the IDL documentation on keywords available for use with the SURFACE procedure for
an explanation of each property:

AX, AZ, BOTTOM, HORIZONTAL, LEGO, LOWER_ONLY, SAVE, SHADES,
UPPER_ONLY, ZAXIS, BACKGROUND, CHARSIZE, CLIP, COLOR, DATA, DEVICE,
FONT, LINESTYLE, NOCLIP, NODATA, NOERASE, NORMAL, POSITION,
SUBTITLE, T3D, TICKLEN, TITLE, MAX_VALUE, MIN_VALUE, NSUM, POLAR,
XLOG, YNOZERO, YLOG, XCHARSIZE, YCHARSIZE, ZCHARSIZE, XGRIDSTYLE,
YGRIDSTYLE, ZGRIDSTYLE, XMARGIN, YMARGIN, ZMARGIN, XMINOR,
YMINOR, ZMINOR, XRANGE, YRANGE, ZRANGE, XSTYLE, YSTYLE, ZSTYLE,
XTICKFORMAT, YTICKFORMAT, ZTICKFORMAT, XTICKLEN, YTICKLEN,
ZTICKLEN, XTICKNAME, YTICKNAME, ZTICKNAME, XTICKS, YTICKS, ZTICKS,
XTICKV, YTICKV, ZTICKV, XTITLE, YTITLE, ZTITLE, ZVALUE, ZLOG

Exceptions
None.
ION Guide IONSurface setProperty()

190 Chapter 7: ION Class and Method Reference
setXValue()
Use the setXValue() method to reset the X value of the surface

Syntax
setXValue(int X[])

setXValue(float X[])

setXValue(double X[])

setXValue(String sName)

Arguments
X
The new X value of the surface

sName
The name of the IDL variable that contains the new X value of the surface

Exceptions
None.

setYValue()
Use the setYValue() method to reset the Y value of the surface

Syntax
setYValue(int Y[])

setYValue(float Y[])

setYValue(double Y[])

setYValue(String sName)

Arguments
Y
The new Y value of the surface.
IONSurface setXValue() ION Guide

Chapter 7: ION Class and Method Reference 191
sName
The name of the IDL variable that contains the new Y value of the surface.

Exceptions
None.

setZValue()
Use the setZValue() method to reset the Z value of the surface

Syntax
setZValue(int Z[])

setZValue(float Z[])

setZValue(double Z[])

setZValue(String sName)

Arguments
Z
The new Z value of the surface

sName
The name of the IDL variable that contains the new Z value of the surface

Exceptions
None.
ION Guide IONSurface setZValue()

192 Chapter 7: ION Class and Method Reference
IONVariable
Objects of the IONVariable class provide a client-side representation of an IDL variable.
IONVariable objects are used to read and write data between the IDL server and clients.

Class Declaration
public class IONVariable

Constants
The following constants are used to identify data types

Methods

• IONVariable()
Construct an object of the IONVariable class.

• arrayDimensions()
Returns an int array that contains the arrays dimensions

• getByte()
Returns the byte value of the variable

• getByteArray()
Returns the byte array of the variable

• getComplexArray()
Returns the array of IONComplex values.

• getDComplexArray()
Returns the array of IONDComplex values.

Type Description

TYPE_UNDEFINED Variable is of IDL type undefined

TYPE_BYTE Variable is of IDL type byte

TYPE_INT Variable is of IDL type int

TYPE_LONG Variable is of IDL type long

TYPE_FLOAT Variable is of IDL type float

TYPE_DOUBLE Variable is of IDL type double

TYPE_STRING Variable is of IDL type string

TYPE_COMPLEX Variable is of IDL type complex

TYPE_DCOMPLEX Variable is of IDL type double complex
IONVariable setZValue() ION Guide

Chapter 7: ION Class and Method Reference 193
• getDImaginary()
Returns the imaginary value of a double complex variable

• getDouble()
Returns the double value of the variable

• getDoubleArray()
Returns the double array value of the variable

• getFloat()
Returns the float value of the variable.

• getFloatArray()
Returns the float array of the variable

• getImaginary()
Returns the imaginary value of a complex variable

• getInt()
Returns the int value of the variable

• getIntArray()
Returns the int array of the variable

• getShort()
Returns the short value of the variable.

• getShortArray()
Returns the short array value of the variable

• getString()

Returns the string value of the variable

• getStringArray()

Returns the string array value of the variable

• isArray()
Returns true of the variable is an array.

• toString()
Returns a string that represents the variable value.

• type()

Returns the type of the variable
ION Guide IONVariable setZValue()

194 Chapter 7: ION Class and Method Reference
IONVariable()
The IONVariable() method constructs an object of the specified IDL data type. The
variable can be either a scalar or an array.

Syntax

Scalars
IONVariable()

IONVariable(byte b)

IONVariable(short s)

IONVariable(int i)

IONVariable(float f)

IONVariable(double d)

IONVariable(String s)

IONVariable(IONComplex cmp)

IONVariable(IONDComplex dcmp)

Arrays
IONVariable(byte b[], int dims[])

IONVariable(short s[], int dims[])

IONVariable(int i[], int dims[])

IONVariable(float f[], int dims[])

IONVariable(double d[], int dims[])

IONVariable(String s[], int dims[])

IONVariable(IONComplex cmp[], int dims[])

IONVariable(IONDComplex dcmp[], int dims[])

Arguments
Most arguments are straightforward. If no arguments are specified, the IONVariable
object corresponds to an IDL variable of type “Undefined”. Type “short” corresponds to
IDL type “integer”, and type “int” corresponds to IDL type “long integer”. The size of
arrays and the array dimension array are determined through the use of the Java array
length property.
IONVariable IONVariable() ION Guide

Chapter 7: ION Class and Method Reference 195
Example
To create an IONVariable object of type float:

IONVariable oVariable = new IONVariable(1234.5678);

To create an IONVariable object of type float array of size (100,100,3):

float[] farr = new float[100*100*3];

int dims[] = new int[3];

dims[0] = 100;

dims[1] = 100;

dims[2] = 3;

oVariable = new IONVariable(farr, dims);

arrayDimensions()
The arrayDimensions() method returns an int array that contains the size of the
dimensions of the array variable. If the variable is not an array, an exception is thrown.

Syntax
int dims[] = arrayDimensions()

Return Value
The function returns an int array that contains the size of each dimension in the
corresponding element of the array. The number of dimensions available can be
determined through the length property of the returned array.

Arguments
None.

Exceptions
IONNotAnArrayException
Thrown if the IONVariable is not an array.

Example
try {
ION Guide IONVariable arrayDimensions()

196 Chapter 7: ION Class and Method Reference
int dims[] = arrayDimensions();

}catch(IONNotAnArrayException e){

system.err.println(“Variable is not an array”);

}

getByte()
The getByte() method returns the byte value of the variable. If the value is not of type
byte, the scalar value is converted to a byte.

Syntax
byte b = getByte()

Return Value
The method returns the byte value of the variable.

Arguments
None.

Exceptions
IONIsAnArrayException
Thrown if the variable contains an array value

NumberFormatException
Thrown if the variable is a string that cannot be converted.

Example
try {

byte b = getByte();

}catch(IONIsAnArrayException e){

system.err.println(“Variable is an array”);

}catch(NumberFormatException e){

system.err.println(“String Cannot be converted”);

}

IONVariable getByte() ION Guide

Chapter 7: ION Class and Method Reference 197
getByteArray()
The getByteArray() method returns the byte array value of the variable. If the value is not
of type byte, a conversion is attempted.

Syntax
byte b[] = getByteArray()

Return Value
The method returns the byte array value of the variable

Arguments
None.

Exceptions
IONNotAnArrayException
Thrown if the variable is not an array

Example
try {

byte b[] = getByteArray();

}catch(IONNotAnArrayException e){

system.err.println(“Variable is not an array”);

}

getComplexArray()
The getComplexArray() method returns the value of the complex array variable.

Syntax
IONComplex c[] = getComplexArray()

Return Value
The method returns the value of the complex array variable
ION Guide IONVariable getByteArray()

198 Chapter 7: ION Class and Method Reference
Arguments
None.

Exceptions
IONNotAnArrayException
Thrown if the variable is not an array

Example
try {

IONComplex c[] = getComplexArray();

}catch(IONNotAnArrayException e){

system.err.println(“Variable is not an array”);

}

getDComplexArray()
The getDComplexArray() method returns the value of the double complex array
variable. If the value is not of type double complex, conversion is supplied.

Syntax
IONDComplex dc[] = getDComplexArray()

Return Value
The method returns the value of the double complex array variable

Arguments
None.

Exceptions
IONNotAnArrayException
Thrown if the variable is not an array

Example
try {

IONDComplex dc[] = getDComplexArray();
IONVariable getDComplexArray() ION Guide

Chapter 7: ION Class and Method Reference 199
}catch(IONNotAnArrayException e){

system.err.println(“Variable is not an array”);

}

getDImaginary()
The getDImaginary() method returns the imaginary value of the double complex
variable. If the value is not of type double complex, zero is returned.

Syntax
double i = getDImaginary()

Return Value
The method returns the imaginary value of the double complex variable.

Arguments
None.

Exceptions
IONIsAnArrayException
Thrown if the variable contains an array value

Example
try {

double i = getDImaginary();

}catch(IONIsAnArrayException e){

system.err.println(“Variable is an array”);

}

getDouble()
The getDouble() method returns the double value of the variable. If the value is not of
type double, the scalar value is converted to a double.
ION Guide IONVariable getDImaginary()

200 Chapter 7: ION Class and Method Reference
Syntax
double d = getDouble()

Return Value
The method returns the double value of the variable.

Arguments
None.

Exceptions
IONIsAnArrayException
Thrown if the variable contains an array value

NumberFormatException
Thrown if the variable is a string and cannot be converted.

Example
try {

double d = getDouble();

}catch(IONIsAnArrayException e){

system.err.println(“Variable is an array”);

}catch(NumberFormatException e){

system.err.println(“String Cannot be converted”);

}

getDoubleArray()
The getDoubleArray() method returns the double array value of the variable. If the value
is not of type double, a conversion is attempted.

Syntax
double d[] = getDoubleArray()

Return Value
The method returns the double array value of the variable
IONVariable getDoubleArray() ION Guide

Chapter 7: ION Class and Method Reference 201
Arguments
None.

Exceptions
IONNotAnArrayException
Thrown if the variable is not an array

Example
try {

double d[] = getDoubleArray();

}catch(IONNotAnArrayException e){

system.err.println(“Variable is not an array”);

}

getFloat()
The getFloat() method returns the float value of the variable. If the value is not of type
float, the scalar value is converted to a float.

Syntax
float f = getFloat()

Return Value
The method returns the float value of the variable.

Arguments
None.

Exceptions
IONIsAnArrayException
Thrown if the variable contains an array value

NumberFormatException
Thrown if the variable is a string and cannot be converted.
ION Guide IONVariable getFloat()

202 Chapter 7: ION Class and Method Reference
Example
try {

float f = getFloat();

}catch(IONIsAnArrayException e){

system.err.println(“Variable is an array”);

}catch(NumberFormatException e){

system.err.println(“String Cannot be converted”);

}

getFloatArray()
The getFloatArray() method returns the float array value of the variable. If the value is
not of type float, a conversion is attempted.

Syntax
float f[] = getFloatArray()

Return Value
The method returns the float array value of the variable

Arguments
None.

Exceptions
IONNotAnArrayException
Thrown if the variable is not an array

Example
try {

float f[] = getFloatArray();

}catch(IONNotAnArrayException e){

system.err.println(“Variable is not an array”);

}

IONVariable getFloatArray() ION Guide

Chapter 7: ION Class and Method Reference 203
getImaginary()
The getImaginary() method returns the imaginary value of the complex variable. If the
value is not of type complex, zero is returned.

Syntax
float i = getImaginary()

Return Value
The method returns the imaginary value of the complex variable.

Arguments
None.

Exceptions
IONIsAnArrayException
Thrown if the variable contains an array value

Example
try {

float i = getImaginary();

}catch(IONIsAnArrayException e){

system.err.println(“Variable is an array”);

}

getInt()
The getInt() method returns the int value of the variable. If the value is not of type int
(IDL type long), the scalar value is converted to a int.

Syntax
int i = getInt()

Return Value
The method returns the int value of the variable.
ION Guide IONVariable getImaginary()

204 Chapter 7: ION Class and Method Reference
Arguments
None.

Exceptions
IONIsAnArrayException
Thrown if the variable contains an array value

NumberFormatException
Thrown if the variable is a string and cannot be converted.

Example
try {

int i = getInt();

}catch(IONIsAnArrayException e){

system.err.println(“Variable is an array”);

}catch(NumberFormatException e){

system.err.println(“String Cannot be converted”);

}

getIntArray()
The getIntArray() method returns the int array value of the variable. If the value is not of
type int, a conversion is attempted.

Syntax
int i[] = getIntArray()

Return Value
The method returns the int array value of the variable

Arguments
None.
IONVariable getIntArray() ION Guide

Chapter 7: ION Class and Method Reference 205
Exceptions
IONNotAnArrayException
Thrown if the variable is not an array

Example
try {

int i[] = getIntArray();

}catch(IONNotAnArrayException e){

system.err.println(“Variable is not an array”);

}

getShort()
The getShort() method returns the short value of the variable. If the value is not of type
short (IDL type int), the scalar value is converted to a short.

Syntax
short s = getShort()

Return Value
The method returns the short value of the variable.

Arguments
None.

Exceptions
IONIsAnArrayException
Thrown if the variable contains an array value

NumberFormatException
Thrown if the variable is a string that cannot be converted.

Example
try {

short s = getShort();
ION Guide IONVariable getShort()

206 Chapter 7: ION Class and Method Reference
}catch(IONIsAnArrayException e){

system.err.println(“Variable is an array”);

}catch(NumberFormatException e){

system.err.println(“String Cannot be converted”);

}

getShortArray()
The getShortArray() method returns the short array value of the variable. If the value is
not of type short, a conversion is attempted.

Syntax
short s[] = getShortArray()

Return Value
The method returns the short array value of the variable

Arguments
None.

Exceptions
IONNotAnArrayException
Thrown if the variable is not an array

Example
try {

short s[] = getShortArray();

}catch(IONNotAnArrayException e){

system.err.println(“Variable is not an array”);

}

IONVariable getShortArray() ION Guide

Chapter 7: ION Class and Method Reference 207
getString()
The getString() method returns the string value of the variable. If the value is not of type
string, the scalar value is converted to a string.

Syntax
String st = getString()

Return Value
The method returns the string value of the variable.

Arguments
None.

Exceptions
IONIsAnArrayException
Thrown if the variable contains an array value

Example
try {

String st = getString();

}catch(IONIsAnArrayException e){

system.err.println(“Variable is an array”);

}

getStringArray()
The getStringArray() method returns the string array value of the variable. If the value is
not of type string, a conversion is attempted.

Syntax
String st[] = getStringArray()

Return Value
The method returns the string array value of the variable
ION Guide IONVariable getString()

208 Chapter 7: ION Class and Method Reference
Arguments
None.

Exceptions
IONNotAnArrayException
Thrown if the variable is not an array

Example
try {

String st[] = getStringArray();

}catch(IONNotAnArrayException e){

system.err.println(“Variable is not an array”);

}

isArray()
Use the isArray() method to determine if the value of the variable is an array.

Syntax
boolean bisArray = isArray()

Return Value
This method returns true if the variable is an array and false if the variable is not.

Arguments
None.

Exceptions
None

Example
boolean bIsArray = isArray();
IONVariable isArray() ION Guide

Chapter 7: ION Class and Method Reference 209
toString()
The toString() method returns a string representation of the variables value.

Syntax
String st = toString()

Return Value
A string that represents the value of the variable. The string is in a format that can be
understood by IDL.

Arguments
None.

Exceptions
None.

Example
String s = toString();

type()
The type() method returns the type of the value the variable contains. This return value
is one of the constant type codes which are a part of this object.

Syntax
int typecode = type()

Return Value
This function returns the type code of the variable.

Arguments
None
ION Guide IONVariable toString()

210 Chapter 7: ION Class and Method Reference
Exceptions
None

Example
int typeCode = type();
IONVariable type() ION Guide

Chapter 7: ION Class and Method Reference 211
IONWindow
The IONWindow class extends the Java Frame class to let the ION windows have access
to the top-level window events. The windows need an IONWindowingClient registered
with them as a callback object for ‘destroy’ events.

Class Declaration
public class IONWindow extends Frame

Methods

• IONWindow()
Construct an object of the IONWindow class

• setId()
Set the ID the owner uses to identify this window.

• setOwner()
Tell the window who to call to destroy the window

IONWindow()
The IONWindow() method constructs an IONWindow object.

Syntax
IONWindow(String title)

Arguments
title
The title of the frame

Exceptions
None.

setId()
Use the setID() method to set the ID that the owner uses to identify the window.
ION Guide IONWindow IONWindow()

212 Chapter 7: ION Class and Method Reference
Syntax
setId(int id)

Arguments
id
The id of the window.

Exceptions
None.

setOwner()
Use the setOwner() method to set the owner of the window.

Syntax
setOwner(IONWindowingClient owner)

Arguments
owner
The owner of the frame

Exceptions
None
IONWindow setOwner() ION Guide

Chapter 7: ION Class and Method Reference 213
IONWindowingClient
The IONWindowingClient class provides mechanisms to handle the processing of the
windowing commands that are part of an IDL Direct graphics driver. This includes the
creation, deletion, showing, hiding and iconization of windows on the client.

Class Declaration
public class IONWindowingClient extends IONGraphicsClient

Methods

• IONWindowingClient()
Construct an object of the IONWindowingClient class.

• connect()
Connect to the server.

• createPixmap()
Creates an offscreen drawing area.

• createWindow()
Creates a window on the client.

• deleteWindow()
Deletes a given window or pixmap.

• iconizeWindow()
Used to iconize/restore a window.

• isPixmap()
Returns true if window is a pixmap

• isWindow()
Returns true if window is a window.

• showWindow()
Used to show/hide a window.

IONWindowingClient()
Use the IONWindowingClient() method to construct an IONWindowingClient object.
This initializes the object. The connect method (from IONGraphicsClient) must be
called to establish a connection between the client and the server.
ION Guide IONWindowingClient IONWindowingClient()

214 Chapter 7: ION Class and Method Reference
Syntax
IONWindowingClient(Component comp)

Arguments
comp
A Java AWT Component that is used to referance the display being used for the graphics.
This is needed for creating offscreen images.

Exceptions
None

connect()
The connect() method establishes a connection between the client and the ION Server.
The client and the server make validity checks and the communication protocol is
established.

Syntax
connect(String hostname [, int portNumber])

Arguments
hostname
The name of the host that the ION Server is running on. If the class is being created as
part of a Java applet, most web browsers require that the host name be the same host that
the applet is being served from.

portNumber
The port number to use when connecting to the ION Server. If this number is not
provided the default port number is used.

Exceptions
IOException
A network IO error detected

UnknownHostException
The given hostname is unknown

IONLicenseException
An ION license could not be obtained
IONWindowingClient connect() ION Guide

Chapter 7: ION Class and Method Reference 215
createPixmap()
The createPixmap() method creates an off screen drawing area of the given size, makes
the drawing area the current destination for graphics output and returns the IDL window
index of the new drawing area.

Syntax
createPixmap(int xsize, int ysize)

createPixmap(int index, int xsize, int ysize)

Return Value
This method returns the IDL window index of the newly created offscreen drawing area.

Arguments
xsize
The width in pixels of the pixmap to be created.

ysize
The height in pixels of the pixmap to be created.

index
The desired IDL index of the new window.

Exceptions
None

Example
int index = createPixmap(xsize, ysize);

int index = createPixmap(index, xsize, ysize);

createWindow()
The createWindow() method creates a drawing area of the given size, places that area in
it’s own window frame, make the window the current destination for graphics output and
returns the IDL window index of the new window. If a title is not specified, the default
IDL windowing convention is used (IDL 0, IDL 1, ...).
ION Guide IONWindowingClient createPixmap()

216 Chapter 7: ION Class and Method Reference
Syntax
createWindow(int xsize, int ysize)

createWindow(int xsize, int ysize, String title)

createWindow(int index, int xsize, int ysize)

createWindow(int index, int xsize, int ysize, String title)

Return Value
This method returns the IDL window index of the newly created window.

Arguments
xsize
The width in pixels of the window to be created.

ysize
The height in pixels of the window to be created.

title
The title of the window to be created.

index
The desired IDL window index of the window.

Exceptions
None

Example
int index = createWindow(xsize, ysize);

int index = createWindow(xsize, ysize, title);

int index = createWindow(index, xsize, ysize);

int index = createWindow(index, xsize, ysize, title);

deleteWindow()
Use the deleteWindow() method to delete the window/pixmap that is referenced by the
given IDL Window index.
IONWindowingClient deleteWindow() ION Guide

Chapter 7: ION Class and Method Reference 217
Syntax
deleteWindow(int index)

Arguments
index
The IDL Window index of the window/pixmap to destroy.

Exceptions
None

iconizeWindow()
Use the iconizeWindow() method to iconize and restore an IDL Window. This method
has no effect on pixmap drawables.

Syntax
iconizeWindow(int index, boolean iconize)

Arguments
index
The IDL Window index of the window to iconize

iconize
Flag used indicate if the window should be iconized or restored.

Exceptions
None

isPixmap()
The isPixmap() method returns true if the window is a pixmap.

Syntax
isPixmap()
ION Guide IONWindowingClient iconizeWindow()

218 Chapter 7: ION Class and Method Reference
Arguments
None

Exceptions
None.

Example
boolean b = isPixmap();

isWindow()
The isWindow() method returns true if the window is a *window*.

Syntax
isWindow()

Arguments
None

Exceptions
None.

Example
boolean b = isWindow();

showWindow()
Use the showWindow() method to raise or lower the Z order of the given window. This
method has no effect on pixmap windows.

Syntax
showWindow(int index, boolean show)
IONWindowingClient isWindow() ION Guide

Chapter 7: ION Class and Method Reference 219
Arguments
index
The IDL Window index of the window to iconize

show
Flag used indicate if the window should be shown or hidden.

Exceptions
None
ION Guide IONWindowingClient showWindow()

220 Chapter 7: ION Class and Method Reference
IONWindowingClient showWindow() ION Guide

Chapter 8

Troubleshooting

The following topics are covered in this chapter:

Enable Java in Your Browser 222
File Permissions 222
Starting the ION Service 222
Location of Class Files 222
Location of IDL .pro Files 223
Browser Timeout on Error 223
221

222 Chapter 8: Troubleshooting
Using ION applets over the World Wide Web and requires interaction between your web
server, the ION Server, and IDL. It is beyond the scope of this manual to discuss problems
with your web server setup; the following are some possible ION Server and IDL
problems you may encounter.

If your applet fails to function properly, always check the Java console (Netscape
browsers) or the Java log (Microsoft Internet Explorer browsers) for clues. (Microsoft
Internet Explorer users should enable Java logging; the log file is named javalog.txt
and is located in the Java subdirectory of the Windows directory. It is also helpful to set
the ION applet Debug Mode (see page 45); this allows you to check the IDL command
log output for errors.

Enable Java in Your Browser
Most web browsers include a setting that enables the use of Java applets in HTML pages.
Make sure your browser is configured to allow Java applets to load. In Microsoft’s Internet
Explorer, the setting is in the “Active Content” section of the “Security” tab in the Options
dialog. In Netscape’s Navigator, the setting is in the “Advanced” section of the Preferences
dialog.

File Permissions
The ION Daemon runs with the user and group ID of the user who started it. This means
that the daemon will have the same file access permissions as that user. While it is not
necessary to start the ION Daemon as a particularly privileged user, make sure that the
access permissions for the ION class files and any class files you create are such that the
ION Daemon has read permission.

If your applet does not run and the Java Console shows something like the following:

Applet exception: class myApplet not found

where you know that the myApplet.class file exists and is located in the designated
place, you may have a file permissions problem.

Starting the ION Service
On Windows NT systems, only users with the proper permissions are allowed to start and
stop the ION service using the Services Control Panel. Since Administrator privileges are
required to install ION, Administrator privileges are also required to start and stop the
ION service.

Location of Class Files
If you encounter an error that looks like:

Applet xxx can’t start: class xxx not found
Enable Java in Your Browser ION Guide

Chapter 8: Troubleshooting 223
in the message area of your browser or in the Java Console, check to make sure that the
ION package (the directory hierarchy com/rsi/ion/*) or the appropriate ION archive
file is located either in the same directory as the HTML page that contains the applet or
in the directory specified by the CODEBASE attribute of the APPLET tag. See “Locating
the Class Files for use by ION Applets” on page 39 and “Supporting Java Archive Files”
on page 39 for details.

Location of IDL .pro Files
If you call user-written IDL routines from an applet, make sure that the .pro files are
located in IDL’s path. You can do this either by placing the directory that contains your
.pro files in the path specified by the IDL_PATH environment variable, by starting the
IDL Development Environment and adding your directory in the “Path” tab of the
Preferences dialog, or by explicitly altering the value of the IDL system variable !PATH
within your applet code.

If ION attempts to compile and run a .pro file that is not in the path, no output will be
generated but no error will be displayed. The best way to catch errors like this is to enable
the ION applet Debug Mode (see page 45) and check the IDL command log output.

Browser Timeout on Error
If you do encounter an error when running a Java applet, some browsers’ Java virtual
machines will “hang,” requiring you to shut down and restart the browser. It is generally
a good idea to restart your browser after a Java error.

When the error is in an ION applet, there is a chance that the connection to the ION
Server is still active when you close your browser. In this case, your browser may not start
again immediately; it will wait for the ION socket connection to time out before shutting
down and allowing you to start the browser again.

On Unix systems, you can use the kill command to prematurely kill the browser process
and close the socket connection. On Windows NT systems, use the “Processes” tab of the
Task Manager dialog to end a browser process. If you do not manually kill the browser
process, the socket connection will automatically time out in 60 seconds.
ION Guide Location of IDL .pro Files

224 Chapter 8: Troubleshooting
Browser Timeout on Error ION Guide

Index

A
addDrawable() method 135
addGraphic() method 149
addIONCommandDoneListener() method 80
addIONDisconnectListener() method 81
addIONDrawable() method 122
addIONMouseListener() method 91
addIONOutputListener() method 81
ALT attribute 14
applets

attributes 13
compiling 38
controlling with scripts 25
creating 38
debugging 17
including in HTML pages 39
ION pre-built 3
22
IONContourApplet 20
IONGraphicApplet 18
IONPlotApplet 22
IONSurfaceApplet 24
sharing connections 16
using ION 12

ARCHIVEattribute 14
arrayDimensions() method 195
attributes

ALT 14
ARCHIVE 14
CODE 13
CODEBASE 13
for applets 13
HEIGHT 13
NAME 13
PARAM tags 14
WIDTH 13

available fonts 47
AYSNC_COMMANDS parameter 18
5

226 Index
C
Callable IDL 52
character size, setting 47
class files

class path 38
location 9

class path 38
client (applet) verification 53
CODE attribute 13
CODEBASE attribute 13
color (ION device) 46
command line parameters (ION daemon) 54
command security 52
compiling applets 38
configuration details 66
connect() method 82, 123, 135, 214
connecting to the ION server 15
connections

limit 53
maximum number 56, 60

contour plots 20
contour_property parameter 20
COPY keyword (ION device) 45
copyArea() method 124
createImage() method 114
createPixmap() method 215
createWindow() method 215
creating ION applets 38
current font 47

D
daemon 3
debug mode 45
DEBUG_MODE parameter 17
debugging 17
debugMode() method 45, 136
DECOMPOSED keyword (ION device) 46
DECOMPOSED_COLOR parameter 18
deleteWindow() method 216
differencesbetween JavaScript and VBScript 30
directory path 55
disconnect() method 83, 137

for scripts 27
doubleValue() method 97, 108
draw() method 103, 143, 150, 156, 161, 166, 182, 187
drawImage() method 125
drawing 33

drawLine() method 126
drawPolygon() method 126
drawText() method 127

E
erase() method 128
error handling 41
examples

about example code 5
running applets 12
simple applet 42
using JavaScript 27
using VBScript 29

exceptions, handling 41
exclude commands 55
exclude file 54
executeIDLCommand() method 83, 138, 150

for scripts 26
execution of IDL commands 79

F
filtering 52
floatValue() method 97, 108
flush() method 114
FONT keyword (ION device) 46
fonts, available 47
fonts, specifying 46

G
GET_CURRENT_FONT keyword (ION device) 47
GET_GRAPHICS_FUNCTION keyword (ION

device) 47
GET_SCREEN_SIZE keyword (ION device) 47
getByte() method 196
getByteArray() method 197
getColor() method 179
getComplexArray() method 197
getConnection() method 151
getCurrentIndex() method 128
getDComplexArray() method 198
getDImaginary() method 98, 109, 199
getDouble() method 199
getDoubleArray() method 200
getDownButtons() method 92
getFloat() method 201
getFloatArray() method 202
getFreeIndex() method 129
Index C ... G ION Guide

Index 227
getGraphics() method 115, 116
getIDLVariable() method 85, 139
getImage() method 115
getImaginary() method 98, 109, 203
getIndex() method 116
getIndexModel() method 179
getInt() method 203
getIntArray() method 204
getIONDrawableIndices() method 129
getMousePos() method 91
getNumIndices() method 130
getProperty() method 103, 144, 156, 161, 167, 183, 188
getPropertyString() method 157
getShort() method 205
getShortArray() method 206
getString() method 207
getStringArray() method 207
getToolKit() method 117
graphics devices, ION 45
graphics java classes 3

H
HEIGHT attribute 13
HTTP

ION Tunnel Broker 3, 58

I
iconizeWindow() method 217
IDL

command execution 79
command log output 45
Object Graphics 2
Widgets 2

IDL_COMMAND parameter 18
importing the ION package 38
include commands 55
include file 54
including applets in HTML pages 39
initDrawable() method 117
installation 8
intValue() method 99, 110
ION 2

class files 9
connecting to the server 15
controlling applets with scripts 25
direcotry path 55
error handling 41

graphic component Java classes 32
graphics device 45

keywords accepted 45
graphics objects

drawing 33
getting properties 33
setting properties 33
setting values 33

IDL limitations 2
installing 8
low-level Java classes 34
pre-built applets 12
server limitations 2
skills necessary to use 4
using graphics classes 33

ION daemon 3, 52
checking status 60
client verification 53
command line parameters 54
port number 56
security 53
security tokens 56
shutting down 61
starting 53

ION Graphics Java Classes 3
ION HTTP Tunnel Broker 3, 58
ION Low-Level Java Classes 3
ION methods available 26
ION package

importing 38
ION server 3, 52, 65

configuration details 66
connection limit 53
security 52
security files 53
security system 66
starting processes 53

ION Tunnel Broker
port number 55, 60

ION_CONNECTION_NAME parameter 16
ion_httpd command 59
IONCallableClient class 34, 79

addIONCommandDoneListener() method 80
addIONDisconnectListener() method 81
addIONOutputListener() method 81
connect() method 82, 214
disconnect() method 83
executeIDLCommand() method 83
getIDLVariable() method 85
ION Guide Index H ... I

228 Index
IONCallableClient() method 80
removeIONCommandDoneListener() method 86
removeIONDisconnectListener() method 87
removeIONOutputListener() method 87
sendIDLCommand() method 88, 153
setIDLVariable() method 88

IONCallableClient() method 80
IONCanvas class 34, 90

addIONMouseListener() method 91
getDownButtons() method 92
getMousePos() method 91
IONCanvas() method 90
removeIONMouseListener() method 92

IONCanvas() method 90
IONCommandComplete() method 94
IONCommandDoneListener interface class 34, 94

IONCommandComplete() method 94
IONComplex class 34, 96

doubleValue() method 97
floatValue() method 97
getDImaginary() method 98
getImaginary() method 98
intValue() method 99
IONComplex() method 96
longValue() method 99
toString() method 100

IONComplex() method 96
IONContour class 33, 101

draw() method 103
getProperty() method 103
IONContour() method 101
setProperty() method 104
setXValue() method 105
setYValue() method 105
setZValue() method 106

IONContour() method 101
IONContourApplet 20
IONDComplex class 34, 107

doubleValue() method 108
floatValue() method 108
getDImaginary() method 109
getImaginary() method 109
intValue() method 110
IONDComplex() method 107
longValue() method 110
toString() method 111

IONDComplex() method 107
IONDisconnection() method 112
IONDisconnectListener interface class 112

IONDisconnection() method 112
iondown utility 61
IONDrawable class 34
IONDrawable interface class 113

createImage() method 114
flush() method 114
getGraphics() method 115, 116
getImage() method 115
getIndex() method 116
getToolKit() method 117
initDrawable() method 117
isIndex() method 118
nColors() method 118
setIndex() method 119
size() method 119

IONGraphicApplet 18
IONGraphicsClient

drawImage() method 125
drawPolygon() method 126
drawText() method 127
erase() method 128
getCurrentIndex() method 128
getFreeIndex() method 129
getIONDrawableIndices() method 129
getNumIndices() method 130
readImage() method 130
removeIONDrawable() method 131
setDecomposed() method 132
setIONDrawable() method 132

IONGraphicsClient class 34, 121
addIONDrawable() method 122
connect() method 123
copyArea() method 124
drawLine() method 126
IONGraphicsClient() method 122

IONGraphicsClient() method 122
IONGrConnection class 32, 134

addDrawable() method 135
connect() method 135
debugMode() method 136
disconnect() method 137
executeIDLCommand() method 138
getIDLVariable() method 139
IONGrConnection() method 134
removeDrawable() method 139
setDrawable() method 140
setIDLVariable() method 141
setYValue() method 146

IONGrConnection() method 134
Index I ... I ION Guide

Index 229
IONGrContour class 32, 142
draw() method 143
getProperty() method 144
IONGrContour() method 142
setProperty() method 145
setXValue() method 146
setZValue() method 147

IONGrContour() method 142
IONGrDrawable class 32, 148

addGraphic() method 149
draw() method 150
executeIDLCommand() method 150
getConnection() method 151
IONGrDrawable() method 149
isConnected() method 151
removeGraphic() method 152
resetMulti() method 152
setMulti() method 153
setNoErase() method 154

IONGrDrawable() method 149
IONGrGraphic abstract class 155

getProperty() method 156
getPropertyString() method 157
IONGrGraphic() method 155, 156
registerProperty() method 159
setNoErase() method 157
setProperty() method 158

IONGrGraphic class 32
IONGrGraphic() method 155
IONGrPlot class 32, 160

draw() method 161
getProperty() method 161
IONGrPlot() method 160
setProperty() method 162
setXValue() method 163
setYValue() method 164

IONGrPlot() method 160
IONGrSurface class 32, 165

draw() method 166
getProperty() method 167
IONGrSurface() method 165
setProperty() method 168
setXValue() method 168
setYValue() method 169
setZValue() method 170

IONGrSurface() method 165
IONMouseListener interface class 34, 171

mouseMoved() method 171
mousePressed() method 172

mouseReleased() method 173
IONOffScreen class 34, 175

IONOffScreen() method 175
IONOffScreen() method 175
IONOutputListener interface class 35, 177

IONOutputText() method 177
IONOutputText() method 177
IONPaletteFilter class 178

getColor() method 179
getIndexModel() method 179
IONPaletteFilter() method 178

IONPaletteFilter() method 178
IONPalletFilter class 35
IONPlot class 33, 181

draw() method 182
getProperty() method 183
IONPlot() method 181
setProperty() method 183
setXValue() method 184
setYValue() method 185

IONPlot() method 181
IONPlotApplet 22
ionstat utility 60
IONSurface class 33, 186

draw() method 187
getProperty() method 188
IONSurface() method 186
setProperty() method 189
setXValue() method 190
setYValue() method 190
setZValue() method 191

IONSurface() method 186
IONSurfaceApplet 24
IONVariable class 35, 192

arrayDimensions() method 195
getByte() method 196
getByteArray() method 197
getComplexArray() method 197
getDComplexArray() method 198
getDImaginary() method 199
getDouble() method 199
getDoubleArray() method 200
getFloat() method 201
getFloatArray() method 202
getImaginary() method 203
getInt() method 203
getIntArray() method

204
getShort() method 205
ION Guide Index I ... I

230 Index
getShortArray() method 206
getString() method 207
getStringArray() method 207
IONVariable() method 194
isArray() method 208
toString() method 209
type() method 209

IONVariable() method 194
IONWindow class 35, 211

IONWindow() method 211
setID() method 211
setOwner() method 212

IONWindow() method 211
IONWindowingClient class 35, 213

createPixmap() method 215
createWindow() method 215
deleteWindow() method 216
iconizeWindow() method 217
IONWindowingClient() method 213
isWindow() method 218
showWindow() method 218

IONWindowingClient classisPixmap() method 217
IONWindowingClient() method 213
isArray() method 208
isConnected() method 151
isIndex() method 118
isPixmap() method 217
isWindow() method 218

J
jar files 9, 39
Java applets

pre-built 12
Java archive files 39
Java classes

ION graphics objects 32
ION low-level 34

JavaScript 25

L
limitations

IDL 2
server 2

line continuation character 2
LINK_URL parameter 17
LiveConnect (Netscape browers) 26
log file 55, 56, 60

longValue() method 99, 110
low-level Java classes 3

M
maximum number of connections 53, 56, 60
mouse operations 80
mouseMoved() method 171
mousePressed() method 172
mouseReleased() method 173

N
NAME attribute 13
nColors() method 118

O
operating systems supported 52
output log file 55, 56, 60

P
package (of Java class files) 9
packages

archive files 39
PARAM Tags 14
parameters

ASYNC_COMMANDS 18
contour_property 20
DEBUG_MODE 17
DECOMPOSED_COLOR 18
IDL_COMMAND 18
ION_CONNECTION_NAME 16
LINK_URL 17
plot_property 22
PORT_NUMBER 15
SERVER_DISCONNECT 15
SERVER_NAME 15
surface_property 24
X_VALUES 20, 22, 24
Y_VALUES 20, 22, 24
Z_VALUES 20, 24

pixel copy operation (ION device) 45
plot_property parameter 22
plotting 22
port number 55, 56, 60
PORT_NUMBER parameter 15
Pre-Built ION Client Applets 3
Index J ... P ION Guide

Index 231
R
readImage() method 130
registerProperty() method 159
removeDrawable() method 139
removeGraphic() method 152
removeIONCommandDoneListener() method 86
removeIONDisconnectListener() method 87
removeIONDrawable() method 131
removeIONMouseListener() method 92
removeIONOutputListener() method 87
resetMulti() method 152

S
screen size, retrieving 47
scripting languages 25, 26

differences 30
security 52

exclude commands 55
exclude file 54
include commands 55
include file 54
ION server 66
lists 56

sendIDLCommand() method 88, 153
server 3
SERVER_DISCONNECT parameter 15
SERVER_NAME parameter 15
SET_CHARACTER_SIZE keyword (ION device) 47
SET_GRAPHICS_FUNCTION keyword (ION

device) 47
SET_PLOT routine 45
setDecomposed() method 132
setDrawable() method 140
setID() method 211
setIDLVariable() method 88, 141
setIndex() method 119
setIONDrawable() method 132
setMulti() method 153
setNoErase() method 154, 157
setOwner() method 212
setProperty() method 104, 145, 158, 162, 168, 183, 189
setXValue() method 105, 146, 163, 168, 184, 190
setYValue() method 105, 146, 164, 169, 185, 190
setZValue() method 106, 147, 170, 191
showWindow() method 218
shutting down the ION daemon 61
simple applet example 42

size() method 119
Skills Necessary to use ION 4
status, checking 60
surface plots 24
surface_property parameter 24

T
tips and tricks (building applets) 48
toString() method 100, 111, 209
true-color displays 46
Tunnel Broker 3, 58
type() method 209
typographical conventions 5

U
URL (CODEBASE attribute) 13
URL, linking to 17
using the same connection for multiple applets 16

V
VBscript 25

W
What is ION? 2
WIDTH attribute 13

X
X_VALUES parameter 20, 22, 24
X-Y plots 22

Y
Y_VALUES parameter 20, 22, 24

Z
Z_VALUES parameter 20, 24
zip file (of Java class files) 9
ION Guide Index R ... Z

232 Index
Index Z ... Z ION Guide

	ION™(IDL On the Net) Guide
	Table of Contents
	Overview
	What is ION?
	ION Limitations
	ION Components
	Skills Necessary to use ION
	Typographical Conventions
	About the Example Code

	Installation and Configuration
	Installing ION under Unix
	Installing ION under Windows
	Location of ION Class Files
	About Web Servers

	Using ION’s Java Applets
	What are the Pre-Built Applets?
	Using ION Applets
	Attributes Specified in the Applet Tag
	Parameters Specified via PARAM Tags
	IONGraphicApplet
	IONContourApplet
	IONPlotApplet
	IONSurfaceApplet
	ION Applets and Scripting Languages
	Example: Using JavaScript
	Example: Using VBScript

	ION Java Classes
	What are the ION Graphics Classes?
	Using the Graphics Classes
	What are the Low-Level Classes?

	Building ION Applets and Applications
	Creating Applets
	Compiling Applets
	Including Applets in HTML Pages
	Supporting Java Archive Files
	Error Handling and ION Exceptions
	Simple Applet Example
	Debug Mode
	The ION Device
	Tips and Tricks

	Configuring the ION Server
	Command Security
	The ION Daemon
	The ION HTTP Tunnel Broker
	ION Command-Line Utilities
	ION Windows NT Utilities
	The ION Server Process
	Configuration Details

	ION Class and Method Reference
	How to Use this Chapter
	Alphabetical List of Classes
	IONCallableClient
	IONCanvas
	IONCommandDoneListener
	IONComplex
	IONContour
	IONDComplex
	IONDisconnectListener
	IONDrawable
	IONGraphicsClient
	IONGrConnection
	IONGrContour
	IONGrDrawable
	IONGrGraphic
	IONGrPlot
	IONGrSurface
	IONMouseListener
	IONOffScreen
	IONOutputListener
	IONPaletteFilter
	IONPlot
	IONSurface
	IONVariable
	IONWindow
	IONWindowingClient

	Troubleshooting
	Enable Java in Your Browser
	File Permissions
	Starting the ION Service
	Location of Class Files
	Location of IDL .pro Files
	Browser Timeout on Error

	Index

